Harmonic oscillator

Storyboard

With the harmonic oscillator, we can explore the probability of finding a particle within a particular position or velocity range. This helps us understand how phase space is utilized in terms of both momentum and position.

>Model

ID:(1558, 0)



Harmonic Oscillator Model

Definition

A harmonic oscillator is a system that is exposed to a force proportional to the distance to the equilibrium point that it always opposes when moving away from it. An example of a harmonic oscillator is represented by a mass attached to two springs:

ID:(11462, 0)



Harmonic Oscillator Phase Space Curve

Image

La energía de un oscilador armónico con es

$ \displaystyle\frac{ p ^2}{ 2 m E }+\displaystyle\frac{ q ^2}{ 2 E / k }=1 $



lo que se representa como la elipse que muestra la gráfica:

ID:(11467, 0)



Curved range of the phase space of the harmonic oscillator

Note

Probability only makes sense insofar as it refers to a range since otherwise it would be null. In the case of the harmonic oscillator, the range in which we seek to study is that of energy, that is, the energy of the system is between E and E+dE. If it is represented in the phase space, there is a range:

ID:(11468, 0)



Probability of finding the harmonic oscillator in one position

Quote

The probability of finding the particle in a position between q and q+dq corresponds to estimating the states in this range with respect to all the states for which the energy is between E and E+dE:

ID:(11469, 0)



Probability of finding the harmonic oscillator with a moment

Exercise

The probability of finding the particle with a memento between p and p+dp corresponds to estimating the states in this range with respect to all the states for which the energy is between E and E+dE:

ID:(11470, 0)



Harmonic oscillator

Storyboard

With the harmonic oscillator, we can explore the probability of finding a particle within a particular position or velocity range. This helps us understand how phase space is utilized in terms of both momentum and position.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$S$
S
Acción
J s
$k$
k
Constante del resorte
N/m
$r$
r
Curvature radio
m
$p(p)$
p_p
Densidad de probabilidad de un momento
-
$p(q)$
p_q
Densidad de probabilidad de un posición
-
$a$
a
Eje mayor de la elipse
m
$b$
b
Eje menor de la elipse
kg m/s
$dE$
dE
Elemento de energía
J
$dS$
dS
Elemento de superficie de acción
J s
$E$
E
Energía del sistema
J
$S$
S
Entropia del sistema
J/K
$m$
m
Masa de la partícula
kg
$p$
p
Momento de la partícula
kg m/s
$\vec{q}$
&q
Posición
m
$dp$
dp
Rango de momento
kg m/s
$dq$
dq
Rango de posición
m
$S$
S
Surface of Air Bubble
m^2

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

A harmonic oscillator is a system that is exposed to a force proportional to the distance to the equilibrium point that it always opposes when moving away from it. An example of a harmonic oscillator is represented by a mass attached to two springs:

image

En el caso cl sico de una part cula de masa m en un potencial arm nico con constante k el sistema puede aceder a cualquier estado (q,p) mientras su energ a sea con list

equation

La ecuaci n de la energ a del oscilador arm nico con list=3421

equation=3421



se puede reescribir en la forma t pica de una ecuaci n de una elipse con list

equation
equation

with major axes

equation=11478

and the minor axis

equation=11479

El eje mayor de la elipse del oscilador arm nico en el espacio de fase es con list=11477

equation=11477



es con list igual a

equation

El eje menor de la elipse del oscilador arm nico en el espacio de fase es con list=11477

equation=11477



es igual con list a

equation

La energ a de un oscilador arm nico con list=11477 es

equation=11477

lo que se representa como la elipse que muestra la gr fica:

image

Probability only makes sense insofar as it refers to a range since otherwise it would be null. In the case of the harmonic oscillator, the range in which we seek to study is that of energy, that is, the energy of the system is between E and E+dE. If it is represented in the phase space, there is a range:

image

Area of an ellipse

equation

The area of an ellipse with code=4446

equation=4446

whose major axis is value=11478

equation=11478

and whose minor axis is value=11479

equation=11479

is calculated using a list

kyon

Using the area of the phase space ellipse for the harmonic oscillator with list=11480

equation=11480

the phase space area is obtained by subtracting the area at energy $E+dE$ from the area at energy $E$:

$2 \pi (E + dE)\sqrt{\displaystyle\frac{m}{k}} - 2 \pi E \sqrt{\displaystyle\frac{m}{k}} = 2 \pi E \sqrt{\displaystyle\frac{m}{k}}$



Thus, with list:

kyon

The probability of finding the particle in a position between q and q+dq corresponds to estimating the states in this range with respect to all the states for which the energy is between E and E+dE:

image

Con el rea de la capa con list=11482

equation=11482



y la ecuaci n de la elipse con list=11477

equation=11477\\n\\nse puede calcular la altura del segmento dq\\n\\n

$dp =\displaystyle\frac{\partial}{\partial E}\sqrt{2 m E - k m q^2} dE =\displaystyle\frac{m}{\sqrt{2 m E - m k q ^2}} dE $



con lo que la probabilidad es con list

equation

The probability of finding the particle with a memento between p and p+dp corresponds to estimating the states in this range with respect to all the states for which the energy is between E and E+dE:

image

Con el rea de la capa con list=11482

equation=11482



y la ecuaci n de la elipse con list=11477

equation=11477\\n\\nse puede calcular la altura del segmento dq\\n\\n

$dq =\displaystyle\frac{\partial}{\partial E}\sqrt{2 E / k - p ^2/ m k } dE=\displaystyle\frac{ m }{\sqrt{2 m E - m k q ^2}} dE$



con lo que la probabilidad es con list

equation


>Model

ID:(1558, 0)