Usuario:


Torque

Storyboard

Si se desea modificar el estado rotacional del cuerpo se debe modificar el momento angular.

La velocidad con que esto ocurre se denomina torque definida como la variación del momento angular en el tiempo y es vectorial dado que la variación del momento angular lo es. Esto lo definió Newton en su segundo principio para el caso de la rotación.

>Modelo

ID:(599, 0)



Torque con momento de inercia constante

Descripción

Si se desea modificar el estado rotacional del cuerpo se debe modificar el momento angular. La velocidad con que esto ocurre se denomina torque definida como la variación del momento angular en el tiempo y es vectorial dado que la variación del momento angular lo es. Esto lo definió Newton en su segundo principio para el caso de la rotación.

Variables

Símbolo
Texto
Variable
Valor
Unidades
Calcule
Valor MKS
Unidades MKS
$\alpha_0$
alpha_0
Aceleración angular constante
rad/s^2
$a$
a
Aceleración instantanea
m/s^2
$\theta$
theta
Ángulo
rad
$\theta_0$
theta_0
Ángulo inicial
rad
$\Delta\theta$
Dtheta
Diferencia de ángulos
rad
$\Delta v$
Dv
Diferencia de velocidad
m/s
$\Delta\omega$
Domega
Diferencia de velocidades angulares
rad/s
$\Delta s$
Ds
Distancia recorrida en un tiempo
m
$F$
F
Fuerza
N
$m$
m
Masa puntual
kg
$p$
p
Momento
kg m/s
$L$
L
Momento Angular
kg m^2/s
$L_0$
L_0
Momento angular inicial
kg m^2/s
$I$
I
Momento de inercia
kg m^2
$p_0$
p_0
Momento inicial
kg m/s
$s$
s
Posición
m
$s_0$
s_0
Posición inicial
m
$r$
r
Radio
m
$t$
t
Tiempo
s
$t_0$
t_0
Tiempo inicial
s
$\Delta t$
Dt
Tiempo transcurrido
s
$T$
T
Torque
N m
$\Delta p$
Dp
Variación del momento
kg m/s
$\Delta L$
DL
Variación del momento angular
kg m^2/s
$v$
v
Velocidad
m/s
$\omega$
omega
Velocidad angular
rad/s
$\omega_0$
omega_0
Velocidad angular inicial
rad/s
$v_0$
v_0
Velocidad inicial
m/s

Cálculos


Primero, seleccione la ecuación:   a ,  luego, seleccione la variable:   a 

Símbolo
Ecuación
Resuelto
Traducido

Cálculos

Símbolo
Ecuación
Resuelto
Traducido

 Variable   Dado   Calcule   Objetivo :   Ecuación   A utilizar



Ecuaciones

Como la velocidad media ($\bar{v}$) es con la distancia recorrida en un tiempo ($\Delta s$) y el tiempo transcurrido ($\Delta t$), igual a

$ \bar{v} \equiv\displaystyle\frac{ \Delta s }{ \Delta t }$



y con la distancia recorrida en un tiempo ($\Delta s$) expresado como arco de un c rculo, y el radio ($r$) y la variación del angulo ($\Delta\theta$) son

$ \Delta s=r \Delta\theta $



y la definici n de la velocidad angular media ($\bar{\omega}$) es

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



entonces,

$v=\displaystyle\frac{\Delta s}{\Delta t}=r\displaystyle\frac{\Delta\theta}{\Delta t}=r\omega$



Como la relaci n es general, se puede aplicar para valores instant neos, lo que resulta en

$ v = r \omega $

.

(ID 3233)

Como la velocidad media ($\bar{v}$) es con la distancia recorrida en un tiempo ($\Delta s$) y el tiempo transcurrido ($\Delta t$), igual a

$ \bar{v} \equiv\displaystyle\frac{ \Delta s }{ \Delta t }$



y con la distancia recorrida en un tiempo ($\Delta s$) expresado como arco de un c rculo, y el radio ($r$) y la variación del angulo ($\Delta\theta$) son

$ \Delta s=r \Delta\theta $



y la definici n de la velocidad angular media ($\bar{\omega}$) es

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



entonces,

$v=\displaystyle\frac{\Delta s}{\Delta t}=r\displaystyle\frac{\Delta\theta}{\Delta t}=r\omega$



Como la relaci n es general, se puede aplicar para valores instant neos, lo que resulta en

$ v = r \omega $

.

(ID 3233)

Como la velocidad media ($\bar{v}$) es con la distancia recorrida en un tiempo ($\Delta s$) y el tiempo transcurrido ($\Delta t$), igual a

$ \bar{v} \equiv\displaystyle\frac{ \Delta s }{ \Delta t }$



y con la distancia recorrida en un tiempo ($\Delta s$) expresado como arco de un c rculo, y el radio ($r$) y la variación del angulo ($\Delta\theta$) son

$ \Delta s=r \Delta\theta $



y la definici n de la velocidad angular media ($\bar{\omega}$) es

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



entonces,

$v=\displaystyle\frac{\Delta s}{\Delta t}=r\displaystyle\frac{\Delta\theta}{\Delta t}=r\omega$



Como la relaci n es general, se puede aplicar para valores instant neos, lo que resulta en

$ v = r \omega $

.

(ID 3233)

La aceleraci n angular media se define como la proporci n del ngulo recorrido

$ \Delta\omega = \omega_2 - \omega_1 $



y el tiempo transcurrido

$ \Delta t \equiv t - t_0 $



Esta relaci n entre ambos se establece como la aceleraci n angular media

$ \bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$

durante dicho intervalo de tiempo.

(ID 3234)

Dado que la aceleración media ($\bar{a}$) es igual a la diferencia de velocidad ($\Delta v$) y el tiempo transcurrido ($\Delta t$) seg n

$ \bar{a} \equiv\displaystyle\frac{ \Delta v }{ \Delta t }$



y la aceleración angular media ($\bar{\alpha}$) es igual a la diferencia de velocidades angulares ($\Delta\omega$) y el tiempo transcurrido ($\Delta t$) conforme a

$ \alpha_0 \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$



se deduce que

$\bar{a}=\displaystyle\frac{\Delta v}{\Delta t}=r\displaystyle\frac{\Delta\omega}{\Delta t}=\bar{\alpha}$



Si asumimos que la aceleración angular media ($\bar{\alpha}$) es igual a la aceleración angular constante ($\alpha_0$)

$ \bar{\alpha} = \alpha_0 $



y suponiendo que la aceleración media ($\bar{a}$) es igual a la aceleración constante ($a_0$)

$ a_0 = \bar{a} $



entonces se obtiene la siguiente ecuaci n:

$ a = r \alpha $

(ID 3236)

Si suponemos que la aceleración angular media ($\bar{\alpha}$) es constante, equivalente a la aceleración angular constante ($\alpha_0$), entonces se aplica la siguiente ecuaci n:

$ \bar{\alpha} = \alpha_0 $



Por lo tanto, al considerar la diferencia de velocidades angulares ($\Delta\omega$) junto con la velocidad angular ($\omega$) y la velocidad angular inicial ($\omega_0$):

$ \Delta\omega = \omega_2 - \omega_1 $



y el tiempo transcurrido ($\Delta t$) en relaci n con el tiempo ($t$) y el tiempo inicial ($t_0$):

$ \Delta t \equiv t - t_0 $



la ecuaci n para la aceleración angular media ($\bar{\alpha}$):

$ \alpha_0 \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$



puede expresarse como:

$\alpha_0 = \alpha = \displaystyle\frac{\Delta \omega}{\Delta t} = \displaystyle\frac{\omega - \omega_0}{t - t_0}$



Despejando esta ltima, obtenemos:

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$

(ID 3237)

Dado que el momento es igual a

$ L = I \omega $



se sigue que en el caso en que el momento de inercia no cambia con el tiempo,

$T=\displaystyle\frac{dL}{dt}=\displaystyle\frac{d}{dt}(I\omega) = I\displaystyle\frac{d\omega}{dt} = I\alpha$



lo que implica que

$ T = I \alpha $

.

(ID 3253)

La relación entre el momento Angular ($L$) y el momento ($p$) se expresa como:

$ L = r p $



Utilizando el radio ($r$), esta expresión puede igualarse con el momento de inercia ($I$) y la velocidad angular ($\omega$) de la siguiente manera:

$ L = I \omega $



Sustituyendo posteriormente mediante la masa inercial ($m_i$) y la velocidad ($v$):

$ p = m_i v $



y

$ v = r \omega $



se concluye que el momento de inercia de una partícula girando en una órbita es:

$ I = m_i r ^2$

(ID 3602)

En el caso de la aceleración angular constante ($\alpha_0$), la velocidad angular ($\omega$) en funci n de el tiempo ($t$) sigue una relaci n lineal con el tiempo inicial ($t_0$) y la velocidad angular inicial ($\omega_0$) de la forma:

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$



Dado que el ngulo recorrido es igual al rea bajo la curva de velocidad angular-tiempo, en este caso se puede sumar la contribuci n del rect ngulo:

$\omega_0(t-t_0)$



y el tri ngulo:

$\displaystyle\frac{1}{2}\alpha_0(t-t_0)^2$



Esto nos lleva a la expresi n para el ángulo ($\theta$) y el ángulo inicial ($\theta_0$):

$ \theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2$

(ID 3682)

Si se parte de la posición inicial ($s_0$) y se desea calcular la distancia recorrida en un tiempo ($\Delta s$), es necesario definir un valor para la posición ($s$).

En un sistema unidimensional, la distancia recorrida en un tiempo ($\Delta s$) se obtiene simplemente restando la posición inicial ($s_0$) de la posición ($s$), lo que da como resultado:

$ \Delta s = s - s_0 $

(ID 4352)

Si resolvemos la ecuaci n de la velocidad angular ($\omega$) en t rminos de tiempo, que incluye las variables la velocidad angular inicial ($\omega_0$), el tiempo ($t$), el tiempo inicial ($t_0$) y la aceleración angular constante ($\alpha_0$):

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$



obtenemos la siguiente expresi n para el tiempo:

$t - t_0 = \displaystyle\frac{\omega - \omega_0}{\alpha_0}$



Esta soluci n puede ser sustituida en la ecuaci n para calcular el ángulo ($\theta$) utilizando el ángulo inicial ($\theta_0$) de la siguiente manera:

$ \theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2$



Lo que resulta en la siguiente ecuaci n:

$ \theta = \theta_0 +\displaystyle\frac{ \omega ^2- \omega_0 ^2}{2 \alpha_0 }$

(ID 4386)

Si se deriva en el tiempo la relaci n para el momento angular

$ L = r p $



para el caso de que el radio sea constante

$T=\displaystyle\frac{dL}{dt}=r\displaystyle\frac{dp}{dt}=rF$



por lo que

$ T = r F $

(ID 4431)

Dado que el momento ($p$) se define con la masa inercial ($m_i$) y la velocidad ($v$),

$ p = m_i v $



Si la masa inercial ($m_i$) es igual a la masa inicial ($m_0$), entonces podemos derivar el momento respecto al tiempo y obtener la fuerza con masa constante ($F$):

$F=\displaystyle\frac{d}{dt}p=m_i\displaystyle\frac{d}{dt}v=m_ia$



Por lo tanto, llegamos a la conclusi n de que

$ F = m_i a $

(ID 10975)


Ejemplos


(ID 15527)


(ID 15530)


ID:(599, 0)