Linsenfokus
Storyboard
Der Fokus einer Linse kann aus den Krümmungsradien beider Seiten der Linse berechnet werden.
Bei einer Linse endlicher Dicke hängt der Fokus auch vom Brechungsindex des Mediums (Glas) und der Dicke auf der optischen Achse ab.
ID:(1442, 0)
Formula simplificada del fabricante de lentes
Gleichung
En su versión simplificada (que no depende del grosor del lente) el foco de un lente
$\displaystyle\frac{1}{ f_0 }=( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }\right)$ |
ID:(10924, 0)
Berechnung des Fokus eines bikonvexe dicken Linse
Gleichung
Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene un indice de refracción
$\displaystyle\frac{1}{ f_{vvd} }=( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }-\displaystyle\frac{( n -1)d}{ n R_1 R_2 }\right)$ |
ID:(3348, 0)
Berechnung des Fokus einer Einfache Bikonvexlinse
Gleichung
Una caso especial es aquel en que los radios son iguales, o sea
$\displaystyle\frac{1}{ f_{vsd} }=( n -1)\left(\displaystyle\frac{2}{ R }-\displaystyle\frac{( n -1) d }{ n R ^2}\right)$ |
ID:(3432, 0)
Die Berechnung des Fokus einer bi-konkave dicken Linse
Gleichung
Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene vidrio con indice de refracción
$\displaystyle\frac{1}{ f_{ccd} }=-( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }+\displaystyle\frac{( n -1)d}{ n R_1 R_2 }\right)$ |
ID:(3349, 0)
Berechnung des Fokus einer einfachen Bikonkaven Linse
Gleichung
Una caso especial es aquel en que los radios son iguales, o sea
$\displaystyle\frac{1}{ f_{csd} }=-( n -1)\left(\displaystyle\frac{2}{ R } +\displaystyle\frac{( n -1) d }{ n R ^2}\right)$ |
ID:(3431, 0)
Cálculo del foco de un lente cóncavo-convexo grueso
Gleichung
Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene vidrio con indice de refracción $n$, un grosor en el centro de $d$ y las curvaturas son $R_1$ y $R_2$, se puede calcular el foco $f$. Para ello basta tomar la ecuación del lente bi-convexo e introducir el radio de curvatura $R_1$ con el signo negativo:
$\displaystyle\frac{1}{ f_{cvd} }=( n -1)\left(-\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }+\displaystyle\frac{( n -1)d}{ n R_1 R_2 }\right)$ |
Lente bi-convexo de grosor no despreciable
ID:(3351, 0)
Cálculo del foco de un lente concavo-convexo grueso simétrico
Gleichung
Una caso especial es aquel en que los radios son iguales, o sea
$\displaystyle\frac{1}{ f_{cvs} }=\displaystyle\frac{( n -1)^2 d }{ n R ^2}$ |
ID:(3429, 0)
Cálculo del foco de un lente convexo-cóncavo grueso
Gleichung
Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene vidrio con indice de refracción
$\displaystyle\frac{1}{ f_{vcs} }=( n -1)\left(\displaystyle\frac{1}{ R_1 }-\displaystyle\frac{1}{ R_2 }+\displaystyle\frac{( n -1) d }{ n R_1 R_2 }\right)$ |
ID:(3350, 0)
Cálculo del foco de un lente convexo-concavo grueso simétrico
Gleichung
Una caso especial es aquel en que los radios son iguales, o sea
$\displaystyle\frac{1}{ f_{vcs} }=\displaystyle\frac{( n -1)^2 d }{ n R ^2}$ |
ID:(3430, 0)
0
Video
Video: Foco de Lente