Plane method

Storyboard

Slopes have the issue that the soil can slide if the forces generated by its own weight exceed the soil's cohesion. Since cohesion can vary due to external factors, there is a possibility that a mass may lose stability and shift, making it essential to understand its vulnerability and the likelihood of future destabilization.

>Model

ID:(383, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(16106, 0)



Geometry of the Embankment

Description

>Top


Para modelar la estabilidad de un terreno asumimos un fondo rocoso con una pendiente dada y una capa de suelo homogénea que se puede deslizar sobre esta.

ID:(1134, 0)



Sección

Image

>Top


La sección que estamos estudiando tiene un ancho \Delta.y un largo L:

ID:(2971, 0)



Fuerzas gravitacionales y roce

Image

>Top


En primera instancia podemos considerar que la masa genera una fuerza gravitacional que trata de deslizar el suelo por la pendiente. Por otro lado la componente vertical al fondo rocoso genera el roce necesario para mantener la masa en su lugar:

De no existir agua ambas fuerzas son proporcionales a la masa por lo que finalmente solo dependerá del coeficiente de roce si la capa es estable.

ID:(2970, 0)



Rol del agua en el suelo

Image

>Top


De existir agua en el suelo esta contribuye en varias formas para desestabilizar la capa de suelo. Una primera forma es creando una fuerza de sustentación que reduce la fuerza normal y con ello el roce que sujeta el suelo en el lugar:

Este comportamiento corresponde a lo que se podría llamar en el limite la tendencia a que el suelo flote.

ID:(7985, 0)



Fuerzas de adhesión entre granos

Image

>Top


La segunda contribución del agua tiende, en la medida que el agua este adecuadamente dosificada, a estabilizar el suelo. Si solo figura como humedad relativa alta se forman meniscos de agua entre los granos que ejercen fuerzas cohesivas. Sin embargo si la capa de suelo es inundada dicha sección pierde esta cohesión y es el resto sobre el nivel del agua que debe soportar el peso de la masa:

ID:(7986, 0)



Cohesion and Internal friction angle model

Concept

>Top


The cohesion of the material ($c$) and the angle of internal friction of the soil ($\phi$) depend on the soil composition (the mass fraction of sand in the sample ($g_a$), the mass fraction of silt in the sample ($g_i$), the mass fraction of clay in the sample ($g_c$)) and water content (the mass fraction of water in the sample ($g_w$)).

Based on measurements, phenomenological models can be developed to describe these properties:

Cohesion Model

Cohesion the cohesion of the material ($c$) is expressed using the equation:

$ c = c_0 + k ( g_i + g_c ) - m g_w$



Where the constants the inherent cohesion of dry material ($c_0$), the degree of cohesion induced by fine particles ($k$), and the sensitivity of cohesion to water ($m$) take the following typical values:

• the inherent cohesion of dry material ($c_0$):

Sandy soils 0-5 kPa
Loamy soils 5-15 kPa
Clayey soils 15-50 kPa


• the degree of cohesion induced by fine particles ($k$): 20 - 200 kPa
• the sensitivity of cohesion to water ($m$): 5 - 20 kPa

Internal Friction Angle Model

The internal friction angle the angle of internal friction of the soil ($\phi$) is described using the equation:

$ \phi = \phi_0 + k_a g_a - k_c g_c - k_w g_w$



Where the constants the internal friction angle of the base soil ($\phi_0$), the friction angle sensitivity to clay ($k_c$), the friction angle sensitivity to sand ($k_a$), and the friction angle sensitivity to water ($k_w$) take the following values:

• the internal friction angle of the base soil ($\phi_0$):

Dry sand 30° - 40°
Dry loam 20° - 30°
Compact clays 15° - 25°


• the friction angle sensitivity to clay ($k_c$): 5° - 10°
• the friction angle sensitivity to sand ($k_a$): 3° - 8°
• the friction angle sensitivity to water ($k_w$): 5° - 15°

ID:(16125, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\phi$
phi
Angle of internal friction of the soil
rad
$c$
c
Cohesion of the material
Pa
$k$
k
Degree of cohesion induced by fine particles
Pa
$k_c$
k_c
Friction angle sensitivity to clay
rad
$k_a$
k_a
Friction angle sensitivity to sand
rad
$k_w$
k_w
Friction angle sensitivity to water
rad
$g$
g
Gravitational Acceleration
m/s^2
$c_0$
c_0
Inherent cohesion of dry material
Pa
$\phi_0$
phi_0
Internal friction angle of the base soil
rad
$\sigma$
sigma
Normal tension
Pa
$s$
s
Saturation
-
$SF$
SF
Security factor
-
$m$
m
Sensitivity of cohesion to water
Pa
$\rho_s$
rho_s
Solid Density
kg/m^3
$\gamma_s$
gamma_s
Unit weight of soil
N/m^3
$\gamma_w$
gamma_w
Unit weight of water
N/m^3
$\rho_w$
rho_w
Water density
kg/m^3

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$H$
H
Layer height
m
$g_c$
g_c
Mass fraction of clay in the sample
-
$g_a$
g_a
Mass fraction of sand in the sample
-
$g_i$
g_i
Mass fraction of silt in the sample
-
$g_w$
g_w
Mass fraction of water in the sample
-
$\tau$
tau
Shear stress
Pa
$\theta$
theta
Slope angle of the hillside
$p_v$
p_v
Water pressure in pores
Pa

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ c = c_0 + k ( g_i + g_c ) - m g_w$

c = c_0 + k *( g_i + g_c ) - m * g_w


$ \gamma_s = \rho_s g $

gamma_s = rho_s * g


$ \gamma_w = \rho_w g $

gamma_w = rho_w * g


$ \phi = \phi_0 + k_a g_a - k_c g_c - k_w g_w$

phi = phi_0 + k_a * g_a - k_c * g_c - k_w * g_w


$ p_v = s \gamma_w H $

p_v = s * gamma_w * H


$ SF = \displaystyle\frac{ c + ( \sigma - p_v )\tan \phi }{ \tau } $

SF = ( c + ( sigma - p_v )*tan( phi ))/ tau


$ \sigma = \gamma_s H \cos \theta $

sigma = gamma_s * H *cos( theta )


$ \tau = \gamma_s H \sin \theta $

tau = gamma_s * H *sin( theta )

ID:(16105, 0)



Factor of safety

Equation

>Top, >Model


The the security factor ($SF$) represents the ratio of the stress that prevents sliding. It is calculated based on the cohesion of the material ($c$), adjusted by the normal tension ($\sigma$), reduced by the water pressure in pores ($p_v$), and weighted using the tangent of the angle of internal friction of the soil ($\phi$) and the normal tension ($\sigma$), as expressed in the following equation:

$ SF = \displaystyle\frac{ c + ( \sigma - p_v )\tan \phi }{ \tau } $

$\phi$
Angle of internal friction of the soil
$rad$
10528
$c$
Cohesion of the material
$Pa$
10527
$\sigma$
Normal tension
$Pa$
10510
$SF$
Security factor
$-$
10526
$\tau$
Shear stress
$Pa$
10512
$p_v$
Water pressure in pores
$Pa$
10511

ID:(16112, 0)



Shear stress

Equation

>Top, >Model


The shear stress ($\tau$) is calculated from unit weight of soil ($\gamma_s$), combined with the layer height ($H$), and weighted by the sine of the slope angle of the hillside ($\theta$), as shown in the following formula:

$ \tau = \gamma_s H \sin \theta $

$H$
Layer height
$m$
8239
$\tau$
Shear stress
$Pa$
10512
$\theta$
Slope angle of the hillside
$rad$
4953
$\gamma_s$
Unit weight of soil
$N/m^3$
10508

ID:(16111, 0)



Unit weight of water

Equation

>Top, >Model


unit weight of water ($\gamma_w$) of water is determined from the water density ($\rho_w$) and the gravitational Acceleration ($g$), using the following formula:

$ \gamma_w = \rho_w g $

$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$\gamma_w$
Unit weight of water
$N/m^3$
10509
$\rho_w$
Water density
$kg/m^3$
6000

ID:(16108, 0)



Unit weight of soil

Equation

>Top, >Model


unit weight of soil ($\gamma_s$) of a body is calculated using the solid Density ($\rho_s$) and the gravitational Acceleration ($g$), as expressed in the following formula:

$ \gamma_s = \rho_s g $

$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$\rho_s$
Solid Density
$kg/m^3$
4944
$\gamma_s$
Unit weight of soil
$N/m^3$
10508

ID:(16107, 0)



Pore water pressure

Equation

>Top, >Model


The water pressure in pores ($p_v$) generated by water in the pores is calculated using the saturation ($s$), unit weight of water ($\gamma_w$), and the layer height ($H$), as shown in the following formula:

$ p_v = s \gamma_w H $

$H$
Layer height
$m$
8239
$s$
Saturation
$-$
10529
$\gamma_w$
Unit weight of water
$N/m^3$
10509
$p_v$
Water pressure in pores
$Pa$
10511

ID:(16110, 0)



Normal stress

Equation

>Top, >Model


The normal tension ($\sigma$) is the stress that counteracts sliding, calculated using unit weight of soil ($\gamma_s$), the layer height ($H$), and the slope angle of the hillside ($\theta$), as shown in the following formula:

$ \sigma = \gamma_s H \cos \theta $

$H$
Layer height
$m$
8239
$\sigma$
Normal tension
$Pa$
10510
$\theta$
Slope angle of the hillside
$rad$
4953
$\gamma_s$
Unit weight of soil
$N/m^3$
10508

ID:(16109, 0)



Cohesion model

Equation

>Top, >Model


The cohesion of the material ($c$) can be estimated using the inherent cohesion of dry material ($c_0$), the degree of cohesion induced by fine particles ($k$), the sensitivity of cohesion to water ($m$), the mass fraction of clay in the sample ($g_c$), the mass fraction of silt in the sample ($g_i$), and the mass fraction of water in the sample ($g_w$), with the following formula:

$ c = c_0 + k ( g_i + g_c ) - m g_w$

$c$
Cohesion of the material
$Pa$
10527
$k$
Degree of cohesion induced by fine particles
$Pa$
10532
$c_0$
Inherent cohesion of dry material
$Pa$
10531
$g_c$
Mass fraction of clay in the sample
$-$
10099
$g_i$
Mass fraction of silt in the sample
$-$
10098
$g_w$
Mass fraction of water in the sample
$-$
10530
$m$
Sensitivity of cohesion to water
$Pa$
10535

ID:(16123, 0)



Internal friction angle model

Equation

>Top, >Model


The angle of internal friction of the soil ($\phi$) can be estimated using the internal friction angle of the base soil ($\phi_0$), the friction angle sensitivity to clay ($k_c$), the friction angle sensitivity to sand ($k_a$), the friction angle sensitivity to water ($k_w$), the mass fraction of clay in the sample ($g_c$), the mass fraction of sand in the sample ($g_a$), and the mass fraction of water in the sample ($g_w$), with the following formula:

$ \phi = \phi_0 + k_a g_a - k_c g_c - k_w g_w$

$\phi$
Angle of internal friction of the soil
$rad$
10528
$k_c$
Friction angle sensitivity to clay
$rad$
10538
$k_a$
Friction angle sensitivity to sand
$rad$
10537
$k_w$
Friction angle sensitivity to water
$rad$
10536
$\phi_0$
Internal friction angle of the base soil
$rad$
10534
$g_c$
Mass fraction of clay in the sample
$-$
10099
$g_a$
Mass fraction of sand in the sample
$-$
5797
$g_w$
Mass fraction of water in the sample
$-$
10530

ID:(16124, 0)