Movement on coastal edges

Storyboard

At the shoreline, Coriolis force can lead to circulation that draws nutrient-rich material to the surface (Ekman transport).

>Model

ID:(1578, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15446, 0)



Ekman Transport

Concept

>Top


Cuando existen corrientes en dirección del ecuador en los lados oeste en bordes continentales, la ecuación de Coriolis para el plano con

$ a_{s,y} = - f v_x $



implica que existe una corriente que se aleja de la costa. Esto genera una corriente que lleva aguas frías ricas en nutrientes a la superficie:

Este transporte se denomina el transporte de Ekman.

ID:(11679, 0)



Characterization of the ocean layers

Image

>Top


Ekman's transport causes the boundaries between the surface and deepest layers in the ocean to shift. These are characterized by sudden changes in parameters depending on the temperature. In particular there are changes in:

Temperature (thermocline)
Salinity (halocline)
Density (pycnocline)

ID:(11684, 0)



Invers Ekman Transport

Image

>Top


Si se invierte el sentido del viento para el transporte de Ekman se tiene el proceso inverso (si v_x es negativo a_{s,y} se vuelve positivo).

En este caso se tiene que con la velocidad hacia los polos resulta

$ a_{s,y} = - f v_x $



Esto implica que existe una corriente que va hacia la costa evitando que los nutrientes lleguen a la superficie:

ID:(11680, 0)



Upwelling zones

Image

>Top


Existen distintas zonas en el mundo en donde por vientos, ya sea en forma permanente o estacional, existe surgencia. Esto lleva a que en estos lugares las corrientes que van en dirección de la costa arrastran aguas frias ricas en vida en dirección de la superficie con lo que se favorece la vida en la superficie.

ID:(11700, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$f$
f
Coriolis factor
rad/s
$C_D$
C_D
Drag coefficient
-
$A_z$
A_z
Eddy viscosity for vertical mixing
m/s^2
$u_e$
u_e
Ekman's speed
m/s
$\pi$
pi
Pi
rad
$\rho$
rho
Sea water density
kg/m^3

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\rho_a$
rho_a
Air density
kg/m^3
$Q$
Q
Ekman transport
m^2/s
$D_E$
D_E
Ekman's Depth
m
$U$
U
Wind speed
m/s
$\tau_w$
tau_w
Wind-generated tension
Pa

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ D_E =\sqrt{\displaystyle\frac{2 \pi A_z }{ f }}$

D_E =sqrt( 2 * pi * A_z / f )


$ Q = D_E u_e $

Q = D_E * u_e


$ \tau_w = \rho_a C_D U ^2$

tau_w = rho_a * C_D * U ^2


$ u_e =\displaystyle\frac{ \tau_w }{ f \rho_w D_E }$

u_e = tau_w /( f * rho_w * D_E )

ID:(15443, 0)



Surface tension generated by the wind

Equation

>Top, >Model


The energy density of the wind is a function of the air density ($\rho_a$) and the wind speed ($U$) in the form

$\displaystyle\frac{1}{2}\rho_aU^2$



If only a fraction of the energy is considered to be transferred, the wind-generated tension ($\tau_w$) can be modeled as the energy density multiplied by a factor the drag coefficient ($C_D$):

$ \tau_w = \rho_a C_D U ^2$

$\rho_a$
Air density
$kg/m^3$
8606
$C_D$
Drag coefficient
$-$
8604
$U$
Wind speed
$m/s$
8609
$\tau_w$
Wind-generated tension
$Pa$
8603

ID:(11718, 0)



Ekman's Depth

Equation

>Top, >Model


The tension on the ocean surface generated by the wind is transmitted to the depths through vortices, which causes the dragging of the water mass. The depth of the water, or the ekman's Depth ($D_E$), that can be dragged, depends on how the energy diffuses to deeper layers, corresponding to the eddy viscosity for vertical mixing ($A_z$). It is, with the coriolis factor ($f$), equal to:

$ D_E =\sqrt{\displaystyle\frac{2 \pi A_z }{ f }}$

$f$
Coriolis factor
$rad/s$
8600
$A_z$
Eddy viscosity for vertical mixing
$m^2/s$
8610
$D_E$
Ekman's Depth
$m$
8607
$\pi$
Pi
3.1415927
$rad$
5057

ID:(11670, 0)



Ekman flow velocity

Equation

>Top, >Model


The the wind-generated tension ($\tau_w$) generated by the wind leads to the surface velocity of the ocean, or the ekman's speed ($u_e$), which in turn, through the Coriolis force represented by the coriolis factor ($f$), generates the Ekman transport. This is, with the sea water density ($\rho$) and the ekman's Depth ($D_E$):

$ u_e =\displaystyle\frac{ \tau_w }{ f \rho_w D_E }$

$f$
Coriolis factor
$rad/s$
8600
$D_E$
Ekman's Depth
$m$
8607
$u_e$
Ekman's speed
$m/s$
8608
$\rho_w$
Sea water density
$kg/m^3$
8605
$\tau_w$
Wind-generated tension
$Pa$
8603

With the wind-generated tension ($\tau_w$) over the surface $S$ of the ocean, a force is generated:

$F = \sigma_w S$



which acts upon the mass $m$ calculated from the sea water density ($\rho$), the ekman's Depth ($D_E$), and the surface $S$ through:

$m = \rho_w S D_E$



As the acceleration $a$ is generated by Coriolis with the ekman's speed ($u_e$):

$a = \displaystyle\frac{F}{m} =\displaystyle\frac{\sigma_w S}{\rho_w D_E S} = \displaystyle\frac{\sigma_w}{\rho_w D_E} = f u_e$



resulting in:

$ u_e =\displaystyle\frac{ \tau_w }{ f \rho_w D_E }$

ID:(11701, 0)



Ekman Transport

Equation

>Top, >Model


With the ekman's speed ($u_e$) and the ekman's Depth ($D_E$), the transported volume, or the ekman transport ($Q$), can be estimated:

$ Q = D_E u_e $

$Q$
Ekman transport
$m^2/s$
8611
$D_E$
Ekman's Depth
$m$
8607
$u_e$
Ekman's speed
$m/s$
8608

ID:(11702, 0)