Balance
Storyboard
In a state of equilibrium the energy captured from the sun must necessarily be equal to that which the earth itself emits returned to space. The first comes primarily as visible radiation, heats the planet and this in turn emits as infrared radiation via the atmosphere returned to space.
ID:(537, 0)
Equilibrio termodinámico
Condition
En general el calor fluye desde los objetos de mayor temperatura a los de menor evolucionando asi las temperaturas de todos los elementos involucrados.
Si uno espera un tiempo suficiente los sistemas alcanzan un equilibrio térmico, es decir cada cuerpo esta recibiendo la misma cantidad de calor como entrega a su entrono. En esta situación las temperaturas permanecen constantes en el tiempo y se habla de que el sistema esta en equilibrio termodinámico.
ID:(9976, 0)
Energy balance of the planet\'s surface
Equation
The Earth\'s surface receives energy from the sun $I_{ev}$ and from the lower part of the atmosphere $I_b$. All of this energy is radiated as $I_e$ and lost through convection and conduction $I_d$ with:
$ I_{ev} - I_e - I_d + I_b =0$ |
ID:(4692, 0)
Energy balance of the planet\'s surface, detail
Equation
Bajo condición con de
$$ |
la ecuación de balance con energy transmitted by conduction and evaporation $W/m^2$, infrared Intensity emitted by the Bottom of the Atmosphere $W/m^2$, nIR intensity emitted by the earth $W/m^2$ and vIS intensity absorbed by the ground $W/m^2$
$ I_{ev} - I_e - I_d + I_b =0$ |
se puede reescribir con la radiación VIS absorbida por la superficie con
$ I_{esv} = a_e I_{sev} $ |
la radiación NIR recibida de la atmósfera con
$ I_b = \epsilon \sigma T_b ^4 $ |
la perdida por calor latente y convección con
y la emisión NIR de la propia superficie con
$ I_e = \epsilon \sigma T_e ^4 $ |
como con
$(1- a_e )(1- \gamma_v ) I_s -( \kappa_l + \kappa_c ( T_e - T_b )) u - \sigma \epsilon T_e ^4+ \sigma \epsilon T_b ^4=0$ |
ID:(4681, 0)
Energy balance of the lower part of the atmosphere
Equation
The energy balance equation for the lower part of the atmosphere includes the acquisition of energy through convection and conduction, denoted as $I_d$, as well as the radiation from the Earth\'s surface $I_{esa}$ and from the upper part of the atmosphere $I_t$. All of this energy is subsequently radiated by the lower part of the atmosphere $I_b$ towards both the upper atmosphere and the Earth\'s surface:
$ I_d + I_{esa} -2 I_b + I_t =0$ |
ID:(4693, 0)
Energy balance of the lower part of the atmosphere, detail
Equation
Bajo condición con de
$$ |
la ecuación de balance con energy transmitted by conduction and evaporation $W/m^2$, infrared Intensity emitted by the Bottom of the Atmosphere $W/m^2$, infrared Intensity emitted by the Top of the Atmosphere $W/m^2$ and nIR intensity emitted by the earth to the atmosphere $W/m^2$
$ I_d + I_{esa} -2 I_b + I_t =0$ |
se puede reescribir con la energía del calor latente y convección recibida con
la radiación NIR recibida desde la superficie de la tierra con
$ I_{esa} = \gamma_i I_e $ |
la radiación NIR recibida desde la atmósfera superior con
$ I_t = \epsilon \sigma T_t ^4 $ |
y la radiación emitida tanto hacia la tierra como a la atmósfera superior con
$ I_b = \epsilon \sigma T_b ^4 $ |
con como:
$( \kappa_l + \kappa_c ( T_e - T_b )) u -2 \sigma \epsilon T_b ^4+ \sigma \epsilon T_t ^4+(1- \gamma_i ) \sigma \epsilon T_e ^4=0$ |
ID:(4682, 0)
Energy balance of the upper part of the atmosphere
Equation
The upper part of the atmosphere acquires energy through the absorption of solar energy $I_{sa}$ and from the lower part of the atmosphere $I_b$. Subsequently, this energy is radiated by the upper part $I_t$ both towards the lower part of the atmosphere and towards space:
$ I_{sa} + I_b -2 I_t =0$ |
ID:(4694, 0)
Energy balance of the upper part of the atmosphere, detail
Equation
Bajo condición con de
$$ |
la ecuación de balance con infrared Intensity emitted by the Bottom of the Atmosphere $W/m^2$, infrared Intensity emitted by the Top of the Atmosphere $W/m^2$ and radiation Absorbed by the Clouds $W/m^2$
$ I_{sa} + I_b -2 I_t =0$ |
se puede reescribir con la radiación VIS absorbida por la atmósfera con
$ I_{sa} =( 1 - a_a ) I_{sav} $ |
la radiación NIR recibida de la parte inferior de la atmósfera con
$ I_b = \epsilon \sigma T_b ^4 $ |
y la radiación NIR emitida hacia la parte inferior y al espacio con
$ I_t = \epsilon \sigma T_t ^4 $ |
como con
$(1- a_a ) \gamma_v I_s + \sigma \epsilon T_b ^4-2 \sigma \epsilon T_t ^4=0$ |
ID:(4683, 0)
Numerical solution
Php
Las ecuaciones de balance radiativo
nos permiten calcular las temperaturas sobre la superficie de la tierra $T_e$, en la parte inferior de la atmosfera $T_b$ y en la parte superior $T_t$.
ID:(6866, 0)