Force de Stokes
Équation
La force de Stokes est la force générée par l'écoulement autour d'une sphère immergée en son sein. Dans ce cas, le modèle de la force proportionnelle à la vitesse est utilisé :
$ F_v = b v $ |
La force de traînée est définie en fonction de la viscosité du fluide et de la vitesse de la sphère selon l'équation :
$ F_v = b v $ |
Stokes a explicitement calculé la résistance subie par la sphère et a déterminé que la viscosité est proportionnelle au rayon de la sphère et à sa vitesse, ce qui nous donne la relation suivante :
$ F_v =6 \pi \eta r v $ |
ID:(4871, 0)
Loi de Darcy et résistance hydraulique
Équation
Darcy réécrit l'équation de Hagen Poiseuille de sorte que a différence de pression ($\Delta p$) soit égal à A résistance hydraulique ($R_h$) fois le volumique flux ($J_V$) :
$ \Delta p = R_h J_V $ |
Le volumique flux ($J_V$) peut être calculé à partir de a conductance hydraulique ($G_h$) et a différence de pression ($\Delta p$) en utilisant l'équation suivante :
$ J_V = G_h \Delta p $ |
De plus, en utilisant la relation pour a résistance hydraulique ($R_h$) :
$ R_h = \displaystyle\frac{1}{ G_h }$ |
on obtient :
$ \Delta p = R_h J_V $ |
ID:(3179, 0)
Résistance hydraulique d'un tube
Équation
Puisque a résistance hydraulique ($R_h$) est égal à l'inverse de a conductance hydraulique ($G_h$), il peut être calculé à partir de l'expression de ce dernier. De cette manière, nous pouvons identifier des paramètres liés à la géométrie (le longueur du tube ($\Delta L$) et le rayon du tube ($R$)) et au type de liquide (a viscosité ($\eta$)), qui peuvent être collectivement désignés sous le nom de une résistance hydraulique ($R_h$) :
$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$ |
Puisque a résistance hydraulique ($R_h$) est égal à A conductance hydraulique ($G_h$) conformément à l'équation suivante :
$ R_h = \displaystyle\frac{1}{ G_h }$ |
et puisque a conductance hydraulique ($G_h$) est exprimé en termes de a viscosité ($\eta$), le rayon du tube ($R$), et le longueur du tube ($\Delta L$) comme suit :
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
nous pouvons en conclure que :
$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$ |
ID:(3629, 0)