Benützer:


Chemische Anwendung

Storyboard

>Modell

ID:(1685, 0)



Stokes Kraft

Gleichung

>Top, >Modell


Die Widerstandskraft wird in Abhängigkeit von der Viskosität des Fluids und der Geschwindigkeit der Kugel durch die Gleichung definiert:

$ F_v = b v $



Stokes hat den Widerstand, dem die Kugel ausgesetzt ist, explizit berechnet und festgestellt, dass die Viskosität proportional zum Radius der Kugel und zu ihrer Geschwindigkeit ist, was zu folgender Gleichung führt:

$ F_v =6 \pi \eta r v $

$v$
Geschwindigkeit
$m/s$
6029
$\pi$
Pi
3.1415927
$rad$
5057
$r$
Radius einer Kugel
$m$
10331
$F_v$
Viscose Kraft
$N$
4979
$\eta$
Viskosität
$Pa s$
5422

ID:(4871, 0)



Generación de gotitas

Bild

>Top


Al pulverizar los líquidos se obtiene los droplets:

ID:(12892, 0)



Distribuidor de líquidos

Bild

>Top


En caso de que se busca introducir el químico como liquido en el suelo se trabaja con un sistema que lleva un estanque y trabaja con un cuchillo de abre la tierra para depositar el liquido:

ID:(12893, 0)



Darcys Gesetz und hydraulischer Widerstand

Gleichung

>Top, >Modell


Darcy schreibt die Hagen-Poiseuille-Gleichung so um, dass die Druckunterschied ($\Delta p$) gleich die Hydraulic Resistance ($R_h$) mal der Volumenstrom ($J_V$) ist:

$ \Delta p = R_h J_V $

$R_h$
Hydraulic Resistance
$kg/m^4s$
5424
$\Delta p$
Variación de la Presión
$Pa$
6673
$J_V$
Volumenstrom
$m^3/s$
5448

Der Volumenstrom ($J_V$) kann aus die Hydraulische Leitfähigkeit ($G_h$) und die Druckunterschied ($\Delta p$) unter Verwendung der folgenden Gleichung berechnet werden:

$ J_V = G_h \Delta p $



Weiterhin, unter Verwendung der Beziehung für die Hydraulic Resistance ($R_h$):

$ R_h = \displaystyle\frac{1}{ G_h }$



ergibt sich:

$ \Delta p = R_h J_V $

ID:(3179, 0)



Hydraulischer Widerstand eines Rohres

Gleichung

>Top, >Modell


Da die Hydraulic Resistance ($R_h$) dem Kehrwert von die Hydraulische Leitfähigkeit ($G_h$) entspricht, kann es aus dem Ausdruck des letzteren berechnet werden. Auf diese Weise können wir Parameter identifizieren, die mit der Geometrie (der Rohrlänge ($\Delta L$) und der Rohrradius ($R$)) und der Art des Fluids (die Viskosität ($\eta$)) zusammenhängen und die gemeinsam als eine Hydraulic Resistance ($R_h$) bezeichnet werden können:

$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$

$R_h$
Hydraulic Resistance
$kg/m^4s$
5424
$\pi$
Pi
3.1415927
$rad$
5057
$\Delta L$
Rohrlänge
$m$
5430
$R$
Rohrradius
$m$
5417
$\eta$
Viskosität
$Pa s$
5422

Da die Hydraulic Resistance ($R_h$) gemäß der folgenden Gleichung gleich die Hydraulische Leitfähigkeit ($G_h$) ist:

$ R_h = \displaystyle\frac{1}{ G_h }$



und da die Hydraulische Leitfähigkeit ($G_h$) wie folgt in Bezug auf die Viskosität ($\eta$), der Rohrradius ($R$) und der Rohrlänge ($\Delta L$) ausgedrückt wird:

$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$



können wir folgern, dass:

$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$

ID:(3629, 0)