SARS Case 2003
Description
In 2003 a SARS pandemic occurred that started in Chine and spread via Hong Kong to the rest of the world.
The WHO data, which covers the whole world in particular, has a relatively simple structure for the case of Hong Kong (a single focus). The data that can be downloaded from the general report of [WHO SARS 2003] (http://www.who.int/csr/sars/country/en/) in which is the cumulative number of:
• infected
• dead
• recovered
By date and country.
The number of deaths and accumulated recoveries correspond to the
The accumulated number of infected
To fully describe the model we must, based on the experimental data, determine the factors:
• $\bar{\beta}\equiv\beta C$ which is the infection rate
• $\gamma$ recovery rate
• $\delta$ death rate
• $N$ the number of the social group or cell in which it is propagated
if it is assumed that initially there was only one infected.
ID:(8226, 0)
Definition of contagion rate
Equation
As in the infection spread equation in the SIRD model
$\displaystyle\frac{ dI }{ dt }=\left(\displaystyle\frac{ \beta C }{ N } S - \gamma - \delta \right) I $ |
The number of contacts
$\bar{\beta}=\beta C$ |
ID:(8228, 0)
Number of Infected
Equation
To calculate the number of infected
$ I = J - R - D $ |
ID:(8227, 0)
Recovery rate determination
Equation
As the data of both the infected
$\displaystyle\frac{ dR }{ dt }= \gamma I $ |
\\n\\nyou can make an adjustment for least squares in which you look for a
$min \sum_i\left(\displaystyle\frac{dR_i}{dt}-\gamma I_i\right)^2$
what happens if the recovery rate is
$\gamma=\displaystyle\frac{\displaystyle\sum_iI_i\displaystyle\frac{dR_i}{dt}}{\displaystyle\sum_iI_i^2}$ |
ID:(8229, 0)
Determination of the death rate
Equation
As the data of both the infected
$\displaystyle\frac{ dD }{ dt }= \delta I $ |
\\n\\nyou can make an adjustment for least squares in which you look for a
$min \sum_i\left(\displaystyle\frac{dD_i}{dt}-\delta I_i\right)^2$
what happens if the death rate is
$\delta=\displaystyle\frac{\displaystyle\sum_iI_i\displaystyle\frac{dD_i}{dt}}{\displaystyle\sum_iI_i^2}$ |
ID:(8230, 0)
Infection propagation equation
Equation
The infection spread equation
$\displaystyle\frac{ dI }{ dt }=\left(\displaystyle\frac{ \beta C }{ N } S - \gamma - \delta \right) I $ |
can be rewritten with
$\bar{\beta}=\beta C$ |
how
$\displaystyle\frac{dI}{dt}=\left(\bar{\beta}\displaystyle\frac{S}{N}-(\gamma+\delta)\right)I$ |
ID:(8231, 0)
Infected rate equation
Equation
If the point at which the number of infected reaches a maximum
$\displaystyle\frac{dI}{dt}=\left(\bar{\beta}\displaystyle\frac{S}{N}-(\gamma+\delta)\right)I$ |
\\n\\nand with that\\n\\n
$\bar{\beta}\displaystyle\frac{S_{crit}}{N}-(\gamma+\delta)=0$
so with
$ N = S + I + R + D $ |
you have that the infection rate would be equal to
$\bar{\beta}=\displaystyle\frac{(\gamma+\delta)N}{N-(I_{crit}+R_{crit}+D_{crit})}$ |
Therefore
ID:(8234, 0)
Regression for the calculation of the affected population
Equation
To search for the number of people in the circle
$\displaystyle\frac{dI}{dt}=\left(\bar{\beta}\displaystyle\frac{S}{N}-(\gamma+\delta)\right)I$ |
with the condition
$ N = S + I + R + D $ |
and the relationship for $\bar{\beta}$
$\bar{\beta}=\displaystyle\frac{(\gamma+\delta)N}{N-(I_{crit}+R_{crit}+D_{crit})}$ |
minimization of quadratic deviation
$min \sum_i\left(N\displaystyle\frac{dI_i}{dt}-\bar{\beta}(N)(N-I_i-R_i-D_i)I_i+(\gamma+\delta)I_iN\right)^2$ |
ID:(8232, 0)
$N^2$ factor
Equation
If the expression develops
$min \sum_i\left(N\displaystyle\frac{dI_i}{dt}-\bar{\beta}(N)(N-I_i-R_i-D_i)I_i+(\gamma+\delta)I_iN\right)^2$ |
the coefficient is obtained
$S_1=\sum_i\left(\displaystyle\frac{dI_i}{dt}+(\gamma+\delta)I_i\right)^2$ |
for the term in $N^2$.
ID:(8236, 0)
$\bar{\beta}^2N^2$ factor
Equation
If the expression develops
$min \sum_i\left(N\displaystyle\frac{dI_i}{dt}-\bar{\beta}(N)(N-I_i-R_i-D_i)I_i+(\gamma+\delta)I_iN\right)^2$ |
the coefficient is obtained
$S_2=\sum_iI_i^2$ |
for the term in $\bar{\beta}^2N^2$.
ID:(8237, 0)
$\bar{\beta}^2$ factor
Equation
If the expression develops
$min \sum_i\left(N\displaystyle\frac{dI_i}{dt}-\bar{\beta}(N)(N-I_i-R_i-D_i)I_i+(\gamma+\delta)I_iN\right)^2$ |
the coefficient is obtained
$S_3=\sum_iI_i^2(I_i+R_i+D_i)^2$ |
for the term in $\bar{\beta}^2$.
ID:(8238, 0)
$\bar{\beta}N^2$ factor
Equation
If the expression develops
$min \sum_i\left(N\displaystyle\frac{dI_i}{dt}-\bar{\beta}(N)(N-I_i-R_i-D_i)I_i+(\gamma+\delta)I_iN\right)^2$ |
the coefficient is obtained
$S_4=-2\sum_i\left(\displaystyle\frac{dI_i}{dt}+(\gamma+\delta)I_i\right)I_i$ |
for the term in $\bar{\beta}N^2$.
ID:(8239, 0)
$\bar{\beta}^2N$ factor
Equation
If the expression develops
$min \sum_i\left(N\displaystyle\frac{dI_i}{dt}-\bar{\beta}(N)(N-I_i-R_i-D_i)I_i+(\gamma+\delta)I_iN\right)^2$ |
the coefficient is obtained
$S_5=-2\sum_iI_i^2(I_i+R_i+D_i)$ |
for the term in $\bar{\beta}^2N$.
ID:(8240, 0)
$\bar{\beta}N$ factor
Equation
If the expression develops
$min \sum_i\left(N\displaystyle\frac{dI_i}{dt}-\bar{\beta}(N)(N-I_i-R_i-D_i)I_i+(\gamma+\delta)I_iN\right)^2$ |
the coefficient is obtained
$S_6=2\sum_i\left(\displaystyle\frac{dI_i}{dt}+(\gamma+\delta)I_i\right)I_i(I_i+R_i+D_i)$ |
for the term in $\bar{\beta}N$.
ID:(8241, 0)
Regression equation
Equation
The equation
$min \sum_i\left(N\displaystyle\frac{dI_i}{dt}-\bar{\beta}(N)(N-I_i-R_i-D_i)I_i+(\gamma+\delta)I_iN\right)^2$ |
can be rewritten with
$S_1=\sum_i\left(\displaystyle\frac{dI_i}{dt}+(\gamma+\delta)I_i\right)^2$ |
$S_2=\sum_iI_i^2$ |
$S_3=\sum_iI_i^2(I_i+R_i+D_i)^2$ |
$S_4=-2\sum_i\left(\displaystyle\frac{dI_i}{dt}+(\gamma+\delta)I_i\right)I_i$ |
$S_5=-2\sum_iI_i^2(I_i+R_i+D_i)$ |
$S_6=2\sum_i\left(\displaystyle\frac{dI_i}{dt}+(\gamma+\delta)I_i\right)I_i(I_i+R_i+D_i)$ |
giving
$min (S_1N^2+(S_6+S_4N)N\bar{\beta}+(S_3+S_5N+S_2N^2)\bar{\beta}^2)$ |
where
ID:(8235, 0)
Number of people in cell
Equation
The condition
$min (S_1N^2+(S_6+S_4N)N\bar{\beta}+(S_3+S_5N+S_2N^2)\bar{\beta}^2)$ |
It can be applied differentiating from
$\bar{\beta}=\displaystyle\frac{(\gamma+\delta)N}{N-(I_{crit}+R_{crit}+D_{crit})}$ |
and matching zero with what you get
$N=\displaystyle\frac{(S_6+S_0S_4)S_0-(\gamma+\delta)(2S_3+S_0S_5)}{S_6+S_0S_4+(\gamma+\delta)(S_5+2S_0S_2)}$ |
ID:(8242, 0)
SARS simulator - adjustment of a SEIR Model
Php
This simulator contains the SARS epidemic data for the case of Hong Kong and allows searching the parameters of a SEIR model by adjusting the curves to the actual values:
ID:(9659, 0)