Bombas de rotor y centrifugas
Image 
Los dos principales mecanismos sobre los que se basan las bombas son de rotor (desplazan liquido) y las centrifugas que aceleran el liquido radialmente para generar el movimiento.
ID:(12894, 0)
Comparación entre bombas
Note 
Las bombas centrifugas logran un menor flujo pero parejo sobre un mayor rango de diferencia de presiones:
ID:(12896, 0)
Parallel hydraulic conductivity
Exercise 
If we have three hydraulic resistances $R_{h1}$, $R_{h2}$, and $R_{h3}$, the series sum of the resistances will be:
|
|
ID:(3631, 0)
Pumps, Valves and Actuators
Storyboard 
Variables
Calculations
Calculations
Equations
The volume flow ($J_V$) can be calculated from the hydraulic conductance ($G_h$) and the pressure difference ($\Delta p$) using the following equation:
Furthermore, using the relationship for the hydraulic resistance ($R_h$):
results in:
Since the hydraulic resistance ($R_h$) is equal to the hydraulic conductance ($G_h$) as per the following equation:
and since the hydraulic conductance ($G_h$) is expressed in terms of the viscosity ($\eta$), the tube radius ($R$), and the tube length ($\Delta L$) as follows:
we can conclude that:
In the case where there is no hystrostatic pressure, Bernoulli's law for the density ($\rho$), the pressure in column 1 ($p_1$), the pressure in column 2 ($p_2$), the mean Speed of Fluid in Point 1 ($v_1$) and the mean Speed of Fluid in Point 2 ($v_2$)
can be rewritten with the variación de la Presión ($\Delta p$)
and keeping in mind that
$v_2^2 - v_1^2 = \displaystyle\frac{1}{2}(v_2-v_1)(v_1+v_2)$
with
and
you have to
Examples
Los dos principales mecanismos sobre los que se basan las bombas son de rotor (desplazan liquido) y las centrifugas que aceleran el liquido radialmente para generar el movimiento.
Las bombas centrifugas logran un menor flujo pero parejo sobre un mayor rango de diferencia de presiones:
The variación de la Presión ($\Delta p$) can be calculated from the average speed ($\bar{v}$) and the speed difference between surfaces ($\Delta v$) with the density ($\rho$) using
which allows us to see the effect of the average speed of a body and the difference between its surfaces, as observed in an airplane or bird wing.
Darcy rewrites the Hagen Poiseuille equation so that the pressure difference ($\Delta p$) is equal to the hydraulic resistance ($R_h$) times the volume flow ($J_V$):
Since the hydraulic resistance ($R_h$) is equal to the inverse of the hydraulic conductance ($G_h$), it can be calculated from the expression of the latter. In this way, we can identify parameters related to geometry (the tube length ($\Delta L$) and the tube radius ($R$)) and the type of liquid (the viscosity ($\eta$)), which can be collectively referred to as a hydraulic resistance ($R_h$):
If we have three hydraulic resistances $R_{h1}$, $R_{h2}$, and $R_{h3}$, the series sum of the resistances will be:
ID:(1680, 0)
