Pumps, Valves and Actuators

Storyboard

>Model

ID:(1680, 0)



Bomba centrifuga

Definition


ID:(12878, 0)



Bombas de rotor y centrifugas

Image

Los dos principales mecanismos sobre los que se basan las bombas son de rotor (desplazan liquido) y las centrifugas que aceleran el liquido radialmente para generar el movimiento.

ID:(12894, 0)



Comparación entre bombas

Note

Las bombas centrifugas logran un menor flujo pero parejo sobre un mayor rango de diferencia de presiones:

ID:(12896, 0)



Valvulas

Quote


ID:(12879, 0)



Parallel hydraulic conductivity

Exercise

If we have three hydraulic resistances $R_{h1}$, $R_{h2}$, and $R_{h3}$, the series sum of the resistances will be:

$ K_{pt} = \displaystyle\sum_k K_{hk}$

$R_{h1}$
Hydraulic Resistance 1
$kg/m^4s$
5425
$R_{h2}$
Hydraulic Resistance 2
$kg/m^4s$
5426
$R_{h3}$
Hydraulic Resistance 3
$kg/m^4s$
5427
$R_{st}$
Total hydraulic resistance in series
$kg/m^4s$
5428

ID:(3631, 0)



Pumps, Valves and Actuators

Storyboard

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\bar{v}$
v_m
Average speed
m/s
$\rho$
rho
Density
kg/m^3
$R_h$
R_h
Hydraulic resistance
kg/m^4s
$\Delta v$
Dv
Speed difference between surfaces
m/s
$\Delta L$
DL
Tube length
m
$R$
R
Tube radius
m
$\Delta p$
Dp
Variación de la Presión
Pa
$\eta$
eta
Viscosity
Pa s
$J_V$
J_V
Volume flow
m^3/s

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations

The volume flow ($J_V$) can be calculated from the hydraulic conductance ($G_h$) and the pressure difference ($\Delta p$) using the following equation:

equation=14471

Furthermore, using the relationship for the hydraulic resistance ($R_h$):

equation=15092

results in:

equation

Since the hydraulic resistance ($R_h$) is equal to the hydraulic conductance ($G_h$) as per the following equation:

equation=15092

and since the hydraulic conductance ($G_h$) is expressed in terms of the viscosity ($\eta$), the tube radius ($R$), and the tube length ($\Delta L$) as follows:

equation=15102

we can conclude that:

equation

In the case where there is no hystrostatic pressure, Bernoulli's law for the density ($\rho$), the pressure in column 1 ($p_1$), the pressure in column 2 ($p_2$), the mean Speed of Fluid in Point 1 ($v_1$) and the mean Speed of Fluid in Point 2 ($v_2$)

equation=15495

can be rewritten with the variación de la Presión ($\Delta p$)

equation=4252

and keeping in mind that

$v_2^2 - v_1^2 = \displaystyle\frac{1}{2}(v_2-v_1)(v_1+v_2)$



with

equation=15501

and

equation=15502

you have to

equation


Examples

Los dos principales mecanismos sobre los que se basan las bombas son de rotor (desplazan liquido) y las centrifugas que aceleran el liquido radialmente para generar el movimiento.

image

Las bombas centrifugas logran un menor flujo pero parejo sobre un mayor rango de diferencia de presiones:

image

The variación de la Presión ($\Delta p$) can be calculated from the average speed ($\bar{v}$) and the speed difference between surfaces ($\Delta v$) with the density ($\rho$) using

kyon

which allows us to see the effect of the average speed of a body and the difference between its surfaces, as observed in an airplane or bird wing.

Darcy rewrites the Hagen Poiseuille equation so that the pressure difference ($\Delta p$) is equal to the hydraulic resistance ($R_h$) times the volume flow ($J_V$):

kyon

Since the hydraulic resistance ($R_h$) is equal to the inverse of the hydraulic conductance ($G_h$), it can be calculated from the expression of the latter. In this way, we can identify parameters related to geometry (the tube length ($\Delta L$) and the tube radius ($R$)) and the type of liquid (the viscosity ($\eta$)), which can be collectively referred to as a hydraulic resistance ($R_h$):

kyon

If we have three hydraulic resistances $R_{h1}$, $R_{h2}$, and $R_{h3}$, the series sum of the resistances will be:

kyon


>Model

ID:(1680, 0)