Recolector de hortalizas

Definition


ID:(12872, 0)



Succionador de frutas

Image


ID:(12873, 0)



Modelo del péndulo físico

Quote


ID:(12874, 0)



Harvesting fruits, nuts and vegetables

Storyboard

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\omega_0$
omega_0
Angular Frequency of Physical Pendulum
rad/s
$C_W$
C_W
Coefficient of resistance
-
$\rho$
rho
Density
kg/m^3
$m_g$
m_g
Gravitational mass
kg
$I$
I
Moment of inertia for axis that does not pass through the CM
kg m^2
$L$
L
Pendulum Length
m
$F_W$
F_W
Resistance force
N
$v$
v
Speed with respect to the medium
m/s
$S_p$
S_p
Total object profile
m^2

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations

Similarly to how the equation for the lift force ($F_L$) was derived using the density ($\rho$), the coefficient of lift ($C_L$), the surface that generates lift ($S_w$), and the speed with respect to the medium ($v$)

equation=4417

in this analogy, what corresponds to the surface that generates lift ($S_w$) will be equivalent to the total object profile ($S_p$) and the coefficient of lift ($C_L$) to the coefficient of resistance ($C_W$), thus the resistance force ($F_W$) is calculated:

equation

The drag coefficient is measured and, in turbulent flows over aerodynamic bodies, values are generally found around 0.4.

Given that the the kinetic energy of rotation ($K_r$) of the physical pendulum, in terms of the moment of inertia for axis that does not pass through the CM ($I$) and the angular Speed ($\omega$), is represented by:

equation=3255

and that the potential Energy Pendulum ($V$), as a function of the gravitational mass ($m_g$), the pendulum Length ($L$), the swing angle ($\theta$) and the gravitational Acceleration ($g$), is expressed as:

equation=4514

The total energy equation is written as:

$E = \displaystyle\frac{1}{2}I\omega^2 + \displaystyle\frac{1}{2}mgl\theta^2$



Knowing that the period ($T$) is defined as:

$T = 2\pi\sqrt{\displaystyle\frac{I}{mgl}}$



We can determine the angular frequency as:

equation


Examples

Para cosechar fruta existe la posibilidad de liberarla y capturarla en pleno vuelo. Para ello se dispone del tiempo que se puede calcular de

kyon

The resistance force ($F_W$) kann mit the density ($\rho$), the coefficient of resistance ($C_W$), the total object profile ($S_p$) und the speed with respect to the medium ($v$) entsprechend berechnet werden folgende Formel:

kyon

Si se resta la fuerza de flotaci n de la fruta en el aire la fuerza gravitacional ser

kyon

Si se iguala la fuerza de resistencia aerodin mica con la de gravedad menos la de flotaci n se obtiene la velocidad de ca da relativa como

kyon

O sea que una fruta en una corriente de esta misma velocidad flotara y impurezas ser n arrastradas con la corriente. El sistema tambi n se puede usar para separar calibres.


>Model

ID:(1688, 0)