Harvesting fruits, nuts and vegetables
Storyboard 
Variables
Calculations
Calculations
Equations
Similarly to how the equation for the lift force ($F_L$) was derived using the density ($\rho$), the coefficient of lift ($C_L$), the surface that generates lift ($S_w$), and the speed with respect to the medium ($v$)
in this analogy, what corresponds to the surface that generates lift ($S_w$) will be equivalent to the total object profile ($S_p$) and the coefficient of lift ($C_L$) to the coefficient of resistance ($C_W$), thus the resistance force ($F_W$) is calculated:
The drag coefficient is measured and, in turbulent flows over aerodynamic bodies, values are generally found around 0.4.
Given that the the kinetic energy of rotation ($K_r$) of the physical pendulum, in terms of the moment of inertia for axis that does not pass through the CM ($I$) and the angular Speed ($\omega$), is represented by:
and that the potential Energy Pendulum ($V$), as a function of the gravitational mass ($m_g$), the pendulum Length ($L$), the swing angle ($\theta$) and the gravitational Acceleration ($g$), is expressed as:
The total energy equation is written as:
$E = \displaystyle\frac{1}{2}I\omega^2 + \displaystyle\frac{1}{2}mgl\theta^2$
Knowing that the period ($T$) is defined as:
$T = 2\pi\sqrt{\displaystyle\frac{I}{mgl}}$
We can determine the angular frequency as:
Examples
Para cosechar fruta existe la posibilidad de liberarla y capturarla en pleno vuelo. Para ello se dispone del tiempo que se puede calcular de
The resistance force ($F_W$) kann mit the density ($\rho$), the coefficient of resistance ($C_W$), the total object profile ($S_p$) und the speed with respect to the medium ($v$) entsprechend berechnet werden folgende Formel:
Si se resta la fuerza de flotaci n de la fruta en el aire la fuerza gravitacional ser
Si se iguala la fuerza de resistencia aerodin mica con la de gravedad menos la de flotaci n se obtiene la velocidad de ca da relativa como
O sea que una fruta en una corriente de esta misma velocidad flotara y impurezas ser n arrastradas con la corriente. El sistema tambi n se puede usar para separar calibres.
The angular Frequency of Physical Pendulum ($\omega_0$) is determined as a function of the gravitational mass ($m_g$), the pendulum Length ($L$), the moment of inertia for axis that does not pass through the CM ($I$), and the gravitational Acceleration ($g$):
ID:(1688, 0)
