
Modelo
Top 

Parâmetros

Variáveis

Cálculos




Cálculos
Cálculos







Equações
c(r)=\displaystyle\frac{c_1\ln(r_2/r)+c_2\ln(r/r_1)}{\ln(r_2/r_1)}
c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)
c(r)=\displaystyle\frac{r_1c_1(r_2-r)+r_2c_2(r-r_1)}{r(r_2-r_1)}
c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))
c(x)=c_1+\displaystyle\frac{c_2-c_1}{x_2-x_1}(x-x_1)
c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)
c(x,t)=\displaystyle\frac{1}{2}c_0\left(\textrm{erfc}\displaystyle\frac{h-x}{2\sqrt{Dt}}+\textrm{erfc}\displaystyle\frac{h+x}{2\sqrt{Dt}}\right)
c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))
c(x,t)=\displaystyle\frac{1}{2}c_0\textrm{erfc}\displaystyle\frac{x}{2\sqrt{Dt}}
c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))
c(x,t)=\displaystyle\frac{M}{\sqrt{\pi Dt}}e^{-x^2/4Dt}
c(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)
\displaystyle\frac{\partial c}{\partial t}=\displaystyle\frac{D}{r}\displaystyle\frac{\partial}{\partial r}\left( r\displaystyle\frac{\partial c}{\partial r} \right)
dc/dt=(D/r)d(rdc/dr)/dr
\displaystyle\frac{\partial c}{\partial t}=D\left(\displaystyle\frac{\partial^2c}{\partial r^2}+\displaystyle\frac{2}{r}\displaystyle\frac{\partial c}{\partial r} \right)
dc/dt=D(d^2c/dr^2+(2/r)dc/dr)
\displaystyle\frac{\partial c}{\partial t}=D\displaystyle\frac{\partial^2 c}{\partial x^2}
dc/dt=Dd^2c/dx^2
j=-D\displaystyle\frac{c_2-c_1}{x_2-x_1}
j=-D(c_2-c_1)/(x_2-x_1)
J=\displaystyle\frac{2\pi D(c_2-c_1)}{\ln(r_2/r_1)}
J=2pi D(c_2-c_1)/ln(r_2/r_1)
J=4\pi D\displaystyle\frac{r_1r_2}{r_2-r_1}(c_2-c_1)
J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)
ID:(15360, 0)

Equação de Difusão, 1D
Equação 
A evolução temporal e espacial da concentração c em uma dimensão é governada pela equação:
![]() |
onde D é a constante de difusão.
ID:(8381, 0)

Solução, 1D, estacionária
Equação 
A solução da equação
\displaystyle\frac{\partial c}{\partial t}=D\displaystyle\frac{\partial^2 c}{\partial x^2} |
para o caso estacionário com concentração c_1 na posição x_1 e concentração c_2 na posição x_2 resulta na seguinte distribuição:
![]() |
ID:(8388, 0)

Solução, 1D, estacionária, fluxo
Equação 
Com a solução
c(x)=c_1+\displaystyle\frac{c_2-c_1}{x_2-x_1}(x-x_1) |
e a equação da Lei de Fick
j =- D \displaystyle\frac{ dc_n }{ dz } |
o fluxo é calculado da seguinte forma:
![]() |
ID:(8389, 0)

Solução, 1D, ponto
Equação 
A solução para a equação
\displaystyle\frac{\partial c}{\partial t}=D\displaystyle\frac{\partial^2 c}{\partial x^2} |
para o caso de uma concentração pontual c (delta de Dirac) com um volume total de M é a seguinte:
![]() |
ID:(8383, 0)

Solução, 1D, zona não pontual
Equação 
A solução da equação
\displaystyle\frac{\partial c}{\partial t}=D\displaystyle\frac{\partial^2 c}{\partial x^2} |
para o caso de uma concentração c em um sistema semi-infinito com uma concentração fixa na origem c_0 é a seguinte:
c(x,t)=\displaystyle\frac{1}{2}c_0\left(\textrm{erfc}\displaystyle\frac{h-x}{2\sqrt{Dt}}+\textrm{erfc}\displaystyle\frac{h+x}{2\sqrt{Dt}}\right) |
ID:(8385, 0)

Solução, 1D, semi-infinito
Equação 
A solução da equação
\displaystyle\frac{\partial c}{\partial t}=D\displaystyle\frac{\partial^2 c}{\partial x^2} |
para o caso de uma concentração c em um sistema semi-infinito com uma concentração fixa na origem c_0 é a seguinte:
![]() |
ID:(8384, 0)

Equação de Difusão, 2D
Equação 
A evolução temporal e espacial da concentração c em duas dimensões com simetria rotacional é governada pela equação:
![]() |
onde D é a constante de difusão.
ID:(8382, 0)

Solução, 2D, estacionária
Equação 
A solução da equação
\displaystyle\frac{\partial c}{\partial t}=\displaystyle\frac{D}{r}\displaystyle\frac{\partial}{\partial r}\left( r\displaystyle\frac{\partial c}{\partial r} \right) |
para o caso estacionário com concentração c_1 no raio r_1 e concentração c_2 no raio r_2 resulta em um fluxo da seguinte forma:
![]() |
ID:(8386, 0)

Solução, 2D, estacionária, fluxo
Equação 
Para a solução
c(r)=\displaystyle\frac{c_1\ln(r_2/r)+c_2\ln(r/r_1)}{\ln(r_2/r_1)} |
o fluxo é calculado da seguinte forma:
![]() |
ID:(8387, 0)

Equação de Difusão, 3D
Equação 
A evolução temporal e espacial da concentração c em duas dimensões com simetria rotacional é governada pela equação:
![]() |
onde D é a constante de difusão.
ID:(8390, 0)

Solução, 3D, estacionária
Equação 
A solução da equação
\displaystyle\frac{\partial c}{\partial t}=D\left(\displaystyle\frac{\partial^2c}{\partial r^2}+\displaystyle\frac{2}{r}\displaystyle\frac{\partial c}{\partial r} \right) |
para o caso estacionário com concentração c_1 no raio r_1 e concentração c_2 no raio r_2 resulta em um fluxo da seguinte forma:
![]() |
ID:(8391, 0)

Solução, 3D, estacionária, fluxo
Equação 
Para a solução
c(r)=\displaystyle\frac{c_1\ln(r_2/r)+c_2\ln(r/r_1)}{\ln(r_2/r_1)} |
o fluxo é calculado da seguinte forma:
![]() |
ID:(8392, 0)