Loading web-font TeX/Math/Italic
User: No user logged in.


Solutions

Storyboard

The way the particles diffuse depends on the dimensions of the system. In a one-dimensional system there is only one direction and with it less dilution which facilitates diffusion. In a two-dimensional system and more in three-dimensional system there is the possibility of lateral displacements and therefore slower diffusion.

>Model

ID:(1022, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15302, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units

Calculations


First, select the equation: to , then, select the variable: to
c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)dc/dt=(D/r)d(rdc/dr)/drdc/dt=D(d^2c/dr^2+(2/r)dc/dr)dc/dt=Dd^2c/dx^2j=-D(c_2-c_1)/(x_2-x_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)dc/dt=(D/r)d(rdc/dr)/drdc/dt=D(d^2c/dr^2+(2/r)dc/dr)dc/dt=Dd^2c/dx^2j=-D(c_2-c_1)/(x_2-x_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)




Equations

#
Equation

c(r)=\displaystyle\frac{c_1\ln(r_2/r)+c_2\ln(r/r_1)}{\ln(r_2/r_1)}

c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)


c(r)=\displaystyle\frac{r_1c_1(r_2-r)+r_2c_2(r-r_1)}{r(r_2-r_1)}

c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))


c(x)=c_1+\displaystyle\frac{c_2-c_1}{x_2-x_1}(x-x_1)

c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)


c(x,t)=\displaystyle\frac{1}{2}c_0\left(\textrm{erfc}\displaystyle\frac{h-x}{2\sqrt{Dt}}+\textrm{erfc}\displaystyle\frac{h+x}{2\sqrt{Dt}}\right)

c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))


c(x,t)=\displaystyle\frac{1}{2}c_0\textrm{erfc}\displaystyle\frac{x}{2\sqrt{Dt}}

c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))


c(x,t)=\displaystyle\frac{M}{\sqrt{\pi Dt}}e^{-x^2/4Dt}

c(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)


\displaystyle\frac{\partial c}{\partial t}=\displaystyle\frac{D}{r}\displaystyle\frac{\partial}{\partial r}\left( r\displaystyle\frac{\partial c}{\partial r} \right)

dc/dt=(D/r)d(rdc/dr)/dr


\displaystyle\frac{\partial c}{\partial t}=D\left(\displaystyle\frac{\partial^2c}{\partial r^2}+\displaystyle\frac{2}{r}\displaystyle\frac{\partial c}{\partial r} \right)

dc/dt=D(d^2c/dr^2+(2/r)dc/dr)


\displaystyle\frac{\partial c}{\partial t}=D\displaystyle\frac{\partial^2 c}{\partial x^2}

dc/dt=Dd^2c/dx^2


j=-D\displaystyle\frac{c_2-c_1}{x_2-x_1}

j=-D(c_2-c_1)/(x_2-x_1)


J=\displaystyle\frac{2\pi D(c_2-c_1)}{\ln(r_2/r_1)}

J=2pi D(c_2-c_1)/ln(r_2/r_1)


J=4\pi D\displaystyle\frac{r_1r_2}{r_2-r_1}(c_2-c_1)

J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

ID:(15360, 0)



Diffusion Equation, 1D

Equation

>Top, >Model


The temporal and spatial evolution of concentration c in one dimension is governed by the equation:

\displaystyle\frac{\partial c}{\partial t}=D\displaystyle\frac{\partial^2 c}{\partial x^2}

dc/dt=Dd^2c/dx^2dc/dt=(D/r)d(rdc/dr)/drc(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)j=-D(c_2-c_1)/(x_2-x_1)dc/dt=D(d^2c/dr^2+(2/r)dc/dr)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

where D is the diffusion constant.

ID:(8381, 0)



Solution, 1D, stationary

Equation

>Top, >Model


The solution to the equation

\displaystyle\frac{\partial c}{\partial t}=D\displaystyle\frac{\partial^2 c}{\partial x^2}



for the steady-state case with concentration c_1 at position x_1 and concentration c_2 at position x_2 yields the following distribution:

c(x)=c_1+\displaystyle\frac{c_2-c_1}{x_2-x_1}(x-x_1)

dc/dt=Dd^2c/dx^2dc/dt=(D/r)d(rdc/dr)/drc(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)j=-D(c_2-c_1)/(x_2-x_1)dc/dt=D(d^2c/dr^2+(2/r)dc/dr)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

ID:(8388, 0)



Solution, 1D, stationary, flow

Equation

>Top, >Model


With the solution

c(x)=c_1+\displaystyle\frac{c_2-c_1}{x_2-x_1}(x-x_1)



and the Fick's law equation

j =- D \displaystyle\frac{ dc_n }{ dz }



the flux is calculated as follows:

j=-D\displaystyle\frac{c_2-c_1}{x_2-x_1}

dc/dt=Dd^2c/dx^2dc/dt=(D/r)d(rdc/dr)/drc(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)j=-D(c_2-c_1)/(x_2-x_1)dc/dt=D(d^2c/dr^2+(2/r)dc/dr)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

ID:(8389, 0)



Solution, 1D, point

Equation

>Top, >Model


The solution to the equation

\displaystyle\frac{\partial c}{\partial t}=D\displaystyle\frac{\partial^2 c}{\partial x^2}



for the case of a point concentration c (Dirac delta) with a total volume of M is as follows:

c(x,t)=\displaystyle\frac{M}{\sqrt{\pi Dt}}e^{-x^2/4Dt}

dc/dt=Dd^2c/dx^2dc/dt=(D/r)d(rdc/dr)/drc(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)j=-D(c_2-c_1)/(x_2-x_1)dc/dt=D(d^2c/dr^2+(2/r)dc/dr)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

ID:(8383, 0)



Solution, 1D, non-point zone

Equation

>Top, >Model


The solution to the equation

\displaystyle\frac{\partial c}{\partial t}=D\displaystyle\frac{\partial^2 c}{\partial x^2}



for the case of a concentration c in a semi-infinite system with a fixed concentration at the origin c_0 is as follows:

c(x,t)=\displaystyle\frac{1}{2}c_0\left(\textrm{erfc}\displaystyle\frac{h-x}{2\sqrt{Dt}}+\textrm{erfc}\displaystyle\frac{h+x}{2\sqrt{Dt}}\right)

ID:(8385, 0)



Solution, 1D, semi-infinite

Equation

>Top, >Model


The solution to the equation

\displaystyle\frac{\partial c}{\partial t}=D\displaystyle\frac{\partial^2 c}{\partial x^2}



for the case of a concentration c in a semi-infinite system with a fixed concentration at the origin c_0 is as follows:

c(x,t)=\displaystyle\frac{1}{2}c_0\textrm{erfc}\displaystyle\frac{x}{2\sqrt{Dt}}

dc/dt=Dd^2c/dx^2dc/dt=(D/r)d(rdc/dr)/drc(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)j=-D(c_2-c_1)/(x_2-x_1)dc/dt=D(d^2c/dr^2+(2/r)dc/dr)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

ID:(8384, 0)



Diffusion Equation, 2D

Equation

>Top, >Model


The temporal and spatial evolution of concentration c in two dimensions with rotational symmetry is governed by the equation:

\displaystyle\frac{\partial c}{\partial t}=\displaystyle\frac{D}{r}\displaystyle\frac{\partial}{\partial r}\left( r\displaystyle\frac{\partial c}{\partial r} \right)

dc/dt=Dd^2c/dx^2dc/dt=(D/r)d(rdc/dr)/drc(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)j=-D(c_2-c_1)/(x_2-x_1)dc/dt=D(d^2c/dr^2+(2/r)dc/dr)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

where D is the diffusion constant.

ID:(8382, 0)



Solution, 2D, stationary

Equation

>Top, >Model


The solution to the equation

\displaystyle\frac{\partial c}{\partial t}=\displaystyle\frac{D}{r}\displaystyle\frac{\partial}{\partial r}\left( r\displaystyle\frac{\partial c}{\partial r} \right)



for the steady-state case with concentration c_1 at radius r_1 and concentration c_2 at radius r_2 yields a flux as follows:

c(r)=\displaystyle\frac{c_1\ln(r_2/r)+c_2\ln(r/r_1)}{\ln(r_2/r_1)}

dc/dt=Dd^2c/dx^2dc/dt=(D/r)d(rdc/dr)/drc(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)j=-D(c_2-c_1)/(x_2-x_1)dc/dt=D(d^2c/dr^2+(2/r)dc/dr)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

ID:(8386, 0)



Solution, 2D, stationary, flow

Equation

>Top, >Model


For the solution

c(r)=\displaystyle\frac{c_1\ln(r_2/r)+c_2\ln(r/r_1)}{\ln(r_2/r_1)}



the flux is calculated as follows:

J=\displaystyle\frac{2\pi D(c_2-c_1)}{\ln(r_2/r_1)}

dc/dt=Dd^2c/dx^2dc/dt=(D/r)d(rdc/dr)/drc(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)j=-D(c_2-c_1)/(x_2-x_1)dc/dt=D(d^2c/dr^2+(2/r)dc/dr)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

ID:(8387, 0)



Diffusion Equation, 3D

Equation

>Top, >Model


The temporal and spatial evolution of concentration c in two dimensions with rotational symmetry is governed by the equation:

\displaystyle\frac{\partial c}{\partial t}=D\left(\displaystyle\frac{\partial^2c}{\partial r^2}+\displaystyle\frac{2}{r}\displaystyle\frac{\partial c}{\partial r} \right)

dc/dt=Dd^2c/dx^2dc/dt=(D/r)d(rdc/dr)/drc(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)j=-D(c_2-c_1)/(x_2-x_1)dc/dt=D(d^2c/dr^2+(2/r)dc/dr)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

where D is the diffusion constant.

ID:(8390, 0)



Solution, 3D, stationary

Equation

>Top, >Model


The solution to the equation

\displaystyle\frac{\partial c}{\partial t}=D\left(\displaystyle\frac{\partial^2c}{\partial r^2}+\displaystyle\frac{2}{r}\displaystyle\frac{\partial c}{\partial r} \right)



for the steady-state case with concentration c_1 at radius r_1 and concentration c_2 at radius r_2 yields a flux as follows:

c(r)=\displaystyle\frac{r_1c_1(r_2-r)+r_2c_2(r-r_1)}{r(r_2-r_1)}

dc/dt=Dd^2c/dx^2dc/dt=(D/r)d(rdc/dr)/drc(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)j=-D(c_2-c_1)/(x_2-x_1)dc/dt=D(d^2c/dr^2+(2/r)dc/dr)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

ID:(8391, 0)



Solution, 3D, stationary, flow

Equation

>Top, >Model


For the solution

c(r)=\displaystyle\frac{c_1\ln(r_2/r)+c_2\ln(r/r_1)}{\ln(r_2/r_1)}



the flux is calculated as follows:

J=4\pi D\displaystyle\frac{r_1r_2}{r_2-r_1}(c_2-c_1)

dc/dt=Dd^2c/dx^2dc/dt=(D/r)d(rdc/dr)/drc(x,t)=M/sqrt(pi Dt) e^(-x^2/4Dt)c(x,t)=c_0/2 erfc(x/2 sqrt(Dt))c(x,t)=c_0/2 (erfc(h-x/2 sqrt(Dt))+erfc(h+x/2 sqrt(Dt)))c(r)=(c_1ln(r_2/r)+c_2ln(r/r_1))/ln(r_2/r_1)J=2pi D(c_2-c_1)/ln(r_2/r_1)c(x)=c_1+(c_2-c_1)(x-x_1)/(x_2-x_1)j=-D(c_2-c_1)/(x_2-x_1)dc/dt=D(d^2c/dr^2+(2/r)dc/dr)c(r)=(r_1c_1(r_2-r)+r_2c_2(r-r_1))/(r(r_2-r_1))J=4pi Dr_1r_2(c_2-c_1)/(r_2-r_1)

ID:(8392, 0)