Solutions

Storyboard

When a material (solute) is dissolved in a liquid (solvent), the physical properties of the solvent change.

In the presence of a semipermeable membrane that allows the solvent to pass through but retains the solute, osmotic pressure is generated. This phenomenon results in a reduction of the effective pressure in the solvent.

Additionally, the dissolution affects the liquid's phase transition temperatures. Specifically, it lowers the freezing point and raises the boiling point, altering its thermal behavior.

>Model

ID:(1675, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15290, 0)



Solutions Phase Diagram

Image

>Top


In a phase diagram of a solution, the boundaries between phases shift in such a way that, at the same pressure, the melting point decreases while the boiling point increases:

ID:(1980, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$N_A$
N_A
Avogadro's number
-
$T_b$
T_b
Boiling temperature
K
$T_{bs}$
T_bs
Boiling temperature with solute
K
$l_V$
l_V
Calor latente molar del cambio de fase liquido vapor
J/mol
$l_S$
l_S
Calor latente molar del cambio de fase solido liquido
J/mol
$\mu_L$
mu_L
Chemical potential of the liquid
J
$\mu_S$
mu_S
Chemical potential of the solid
J
$\mu_V$
mu_V
Chemical vapor potential
J
$T_{fs}$
T_fs
Freezing temperature with solute
K
$M$
M
Mass
kg
$M_s$
M_s
Mass of solute
kg
$s_L$
s_L
Molar entropy of the liquid
J/K mol
$s_S$
s_S
Molar entropy of the solid
J/K mol
$s_V$
s_V
Molar entropy of vapor
J/K mol
$M_m$
M_m
Molar Mass
kg/mol
$M_{ms}$
M_ms
Molar mass of the solute
kg/mol
$N_s$
N_s
Number of ions
-
$n$
n
Número de Moles
mol
$T_f$
T_f
Temperatura de fusión
K
$R$
R
Universal gas constant
J/mol K

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$n_s$
n_s
Number of moles of the solute
mol
$N$
N
Number of particles
-

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ l_S = T_f ( s_L - s_S )$

l_S = T_f *( s_L - s_S )


$ l_V = T_b ( s_V - s_L )$

l_V = T_b *( s_V - s_L )


$ \mu_L N_A = s_L ( T_{fs} - T_f ) - \displaystyle\frac{ N_s }{ N } R T_{fs} $

mu_L * N_A = s_L *( T - T_L ) - N_s * R * T / N


$ \mu_L N_A = s_L ( T_{bs} - T_b ) - \displaystyle\frac{ N_s }{ N } R T_{bs} $

mu_L * N_A = s_L *( T - T_L ) - N_s * R * T / N


$ \mu_S N_A = s_S ( T_{fs} - T_f )$

mu_S * N_A = s_S *( T - T_S )


$ \mu_V N_A = s_V ( T_{bs} - T_b )$

mu_V * N_A = s_V *( T - T_V )


$ n = \displaystyle\frac{ M }{ M_m }$

n = M / M_m


$ n_s = \displaystyle\frac{ M_s }{ M_{ms} }$

n = M / M_m


$ n \equiv\displaystyle\frac{ N }{ N_A }$

n = N / N_A


$ n_s \equiv\displaystyle\frac{ N_s }{ N_A }$

n = N / N_A


$ T_{bs} = T_b +\displaystyle\frac{ N_s }{ N }\displaystyle\frac{ R T_b ^2}{ l_V }$

T_bs = T_b +N_s * R * T_b ^2/( N * l_V )


$ T_{fs} = T_f - \displaystyle\frac{ N_s }{ N }\displaystyle\frac{ R T_f ^2}{ l_S }$

T_fs = T_f - R * N_s * T_f ^2/( l_S * N )

ID:(15348, 0)



The chemical potential for a gas

Equation

>Top, >Model


The chemical vapor potential ($\mu_V$), together with the avogadro's number ($N_A$), is equal to the molar entropy of vapor ($s_V$) multiplied by the difference between the absolute temperature ($T$) and the steam reference temperature ($T_V$), expressed as:

$ \mu_V N_A = s_V ( T_{bs} - T_b )$

$ \mu_V N_A = s_V ( T - T_V )$

$T$
$T_{bs}$
Boiling temperature with solute
$K$
9862
$N_A$
Avogadro's number
6.02e+23
$-$
9860
$\mu_V$
Chemical vapor potential
$J$
9851
$s_V$
Molar entropy of vapor
$J/mol K$
9854
$T_V$
$T_b$
Boiling temperature
$K$
9861

ID:(12815, 0)



The chemical potential for a solid

Equation

>Top, >Model


The chemical potential of the solid ($\mu_S$), together with the avogadro's number ($N_A$), is equivalent to the molar entropy of the solid ($s_S$) multiplied by the difference between the absolute temperature ($T$) and the solid reference temperature ($T_S$), represented as:

$ \mu_S N_A = s_S ( T_{fs} - T_f )$

$ \mu_S N_A = s_S ( T - T_S )$

$T$
$T_{fs}$
Freezing temperature with solute
$K$
9863
$N_A$
Avogadro's number
6.02e+23
$-$
9860
$\mu_S$
Chemical potential of the solid
$J$
9853
$s_S$
Molar entropy of the solid
$J/mol K$
9856
$T_S$
$T_f$
Temperatura de fusión
$K$
9498

ID:(12816, 0)



The chemical potential for a solution (1)

Equation

>Top, >Model


The chemical potential of the liquid ($\mu_L$), together with the avogadro's number ($N_A$), is equal to the molar entropy of the liquid ($s_L$) multiplied by the difference between the absolute temperature ($T$) and the liquid reference temperature ($T_L$), in addition to the effect of osmotic pressure, which depends on the number of ions ($N_s$), the number of particles ($N$), the absolute temperature ($T$), and the universal gas constant ($R$), represented as:

$ \mu_L N_A = s_L ( T_{fs} - T_f ) - \displaystyle\frac{ N_s }{ N } R T_{fs} $

$ \mu_L N_A = s_L ( T - T_L ) - \displaystyle\frac{ N_s }{ N } R T $

$T$
$T_{fs}$
Freezing temperature with solute
$K$
9863
$N_A$
Avogadro's number
6.02e+23
$-$
9860
$\mu_L$
Chemical potential of the liquid
$J$
9852
$T_L$
$T_f$
Temperatura de fusión
$K$
9498
$s_L$
Molar entropy of the liquid
$J/mol K$
9855
$N_s$
Number of ions
$-$
9850
$N$
Number of particles
$-$
6080
$R$
Universal gas constant
8.4135
$J/mol K$
4957

ID:(12817, 1)



The chemical potential for a solution (2)

Equation

>Top, >Model


The chemical potential of the liquid ($\mu_L$), together with the avogadro's number ($N_A$), is equal to the molar entropy of the liquid ($s_L$) multiplied by the difference between the absolute temperature ($T$) and the liquid reference temperature ($T_L$), in addition to the effect of osmotic pressure, which depends on the number of ions ($N_s$), the number of particles ($N$), the absolute temperature ($T$), and the universal gas constant ($R$), represented as:

$ \mu_L N_A = s_L ( T_{bs} - T_b ) - \displaystyle\frac{ N_s }{ N } R T_{bs} $

$ \mu_L N_A = s_L ( T - T_L ) - \displaystyle\frac{ N_s }{ N } R T $

$T$
$T_{bs}$
Boiling temperature with solute
$K$
9862
$N_A$
Avogadro's number
6.02e+23
$-$
9860
$\mu_L$
Chemical potential of the liquid
$J$
9852
$T_L$
$T_b$
Boiling temperature
$K$
9861
$s_L$
Molar entropy of the liquid
$J/mol K$
9855
$N_s$
Number of ions
$-$
9850
$N$
Number of particles
$-$
6080
$R$
Universal gas constant
8.4135
$J/mol K$
4957

ID:(12817, 2)



Latent heat of freezing

Equation

>Top, >Model


If the temperatura de fusión ($T_f$) represents the boiling temperature, the molar entropy of the liquid ($s_L$) corresponds to the molar entropy of the liquid, and the molar entropy of the solid ($s_S$) to that of the solid, then the enthalpy of evaporation the calor latente molar del cambio de fase solido liquido ($l_S$) is calculated using the following formula:

$ l_S = T_f ( s_L - s_S )$

$l_S$
Calor latente molar del cambio de fase solido liquido
$J/mol$
9497
$s_L$
Molar entropy of the liquid
$J/mol K$
9855
$s_S$
Molar entropy of the solid
$J/mol K$
9856
$T_f$
Temperatura de fusión
$K$
9498

ID:(9051, 0)



Calor latente de ebullición

Equation

>Top, >Model


If the boiling temperature ($T_b$) is the boiling temperature, the molar entropy of vapor ($s_V$) represents the molar entropy of the vapor, and the molar entropy of the liquid ($s_L$) represents that of the liquid, then the enthalpy of evaporation the calor latente molar del cambio de fase liquido vapor ($l_V$) is calculated using the following expression:

$ l_V = T_b ( s_V - s_L )$

$T_b$
Boiling temperature
$K$
9861
$l_V$
Calor latente molar del cambio de fase liquido vapor
$J/mol$
9501
$s_L$
Molar entropy of the liquid
$J/mol K$
9855
$s_V$
Molar entropy of vapor
$J/mol K$
9854

ID:(9050, 0)



Boiling Point Elevation by Solution

Equation

>Top, >Model


Another effect that varies in solutions is the boiling point. When a solvent boils at a temperature $T$ and pressure $p$ in its pure state, the chemical potential of the liquid phase must equal the chemical potential of the vapor phase.

However, due to the reduction in vapor pressure caused by the presence of a solute, an increase in temperature is required to achieve this equilibrium. As a result, the boiling point of a solution is higher than that of the pure solvent.

Therefore, the boiling temperature with solute ($T_{bs}$), together with the boiling temperature ($T_b$), the number of ions ($N_s$), the number of particles ($N$), the calor latente molar del cambio de fase liquido vapor ($l_V$), and the universal gas constant ($R$), is equal to:

$ T_{bs} = T_b +\displaystyle\frac{ N_s }{ N }\displaystyle\frac{ R T_b ^2}{ l_V }$

$T_b$
Boiling temperature
$K$
9861
$T_{bs}$
Boiling temperature with solute
$K$
9862
$l_V$
Calor latente molar del cambio de fase liquido vapor
$J/mol$
9501
$N_s$
Number of ions
$-$
9850
$N$
Number of particles
$-$
6080
$R$
Universal gas constant
8.4135
$J/mol K$
4957

Si se considera como temperatura de referencia T_0 la del punto de ebullición del liquido T_b, el potencial químico de la solución es

$ \mu_L N_A = s_L ( T - T_L ) - \displaystyle\frac{ N_s }{ N } R T $



y el del vapor

$ \mu_V N_A = s_V ( T_{bs} - T_b )$



se tiene que la temperatura de ebullición de la solución T_s estará definida por

$s_L (T_s-T_b)-\displaystyle\frac{N_s}{N}RT_s= s_V (T_s-T_b)$



Con

$ l_V = T_b ( s_V - s_L )$



se tiene que con

$ T_{bs} = T_b +\displaystyle\frac{ N_s }{ N }\displaystyle\frac{ R T_b ^2}{ l_V }$

ID:(12819, 0)



Freezing Point Reduction by Solution

Equation

>Top, >Model


Another effect that varies in solutions is the freezing point. When a solvent freezes at a temperature $T$ and pressure $p$ in its pure state, the chemical potential of the solid phase must equal that of the liquid phase.

Due to the reduction in vapor pressure caused by the presence of a solute, the temperature must be lowered to achieve this equilibrium. As a result, the freezing point of the solvent decreases in a solution.

Thus, the freezing temperature with solute ($T_{fs}$), together with the freezing temperature ($T_f$), the number of ions ($N_s$), the number of particles ($N$), the calor latente molar del cambio de fase solido liquido ($l_S$), and the universal gas constant ($R$), is equal to:

$ T_{fs} = T_f - \displaystyle\frac{ N_s }{ N }\displaystyle\frac{ R T_f ^2}{ l_S }$

$l_S$
Calor latente molar del cambio de fase solido liquido
$J/mol$
9497
$T_{fs}$
Freezing temperature with solute
$K$
9863
$N_s$
Number of ions
$-$
9850
$N$
Number of particles
$-$
6080
$T_f$
Temperatura de fusión
$K$
9498
$R$
Universal gas constant
8.4135
$J/mol K$
4957

Si se considera como temperatura de referencia T_0 la del punto de ebullición del liquido T_b, el potencial químico de la solución es

$ \mu_L N_A = s_L ( T - T_L ) - \displaystyle\frac{ N_s }{ N } R T $



y el del solido

$ \mu_S N_A = s_S ( T_{fs} - T_f )$



se tiene que la temperatura de ebullición de la solución T_s estara definida por

$s_S (T_s-T_b)= s_L (T_s-T_b)-\displaystyle\frac{N_s}{N}RT_s$



Con

$ l_S = T_f ( s_L - s_S )$



se tiene que con

$ T_{fs} = T_f - \displaystyle\frac{ N_s }{ N }\displaystyle\frac{ R T_f ^2}{ l_S }$

ID:(12818, 0)



Number of moles (1)

Equation

>Top, >Model


The number of moles ($n$) corresponds to the number of particles ($N$) divided by the avogadro's number ($N_A$):

$ n \equiv\displaystyle\frac{ N }{ N_A }$

$N_A$
Avogadro's number
6.02e+23
$-$
9860
$N$
Number of particles
$-$
6080
$n$
Número de Moles
$mol$
6679

ID:(3748, 1)



Number of moles with molar mass (1)

Equation

>Top, >Model


The number of moles ($n$) is determined by dividing the mass ($M$) of a substance by its the molar Mass ($M_m$), which corresponds to the weight of one mole of the substance.

Therefore, the following relationship can be established:

$ n = \displaystyle\frac{ M }{ M_m }$

$M$
Mass
$kg$
5183
$M_m$
Molar Mass
$kg/mol$
6212
$n$
Número de Moles
$mol$
6679

The number of moles ($n$) corresponds to the number of particles ($N$) divided by the avogadro's number ($N_A$):

$ n \equiv\displaystyle\frac{ N }{ N_A }$



If we multiply both the numerator and the denominator by the particle mass ($m$), we obtain:

$n=\displaystyle\frac{N}{N_A}=\displaystyle\frac{Nm}{N_Am}=\displaystyle\frac{M}{M_m}$



So it is:

$ n = \displaystyle\frac{ M }{ M_m }$

The molar mass is expressed in grams per mole (g/mol).

ID:(4854, 1)



Number of moles (2)

Equation

>Top, >Model


The number of moles ($n$) corresponds to the number of particles ($N$) divided by the avogadro's number ($N_A$):

$ n_s \equiv\displaystyle\frac{ N_s }{ N_A }$

$ n \equiv\displaystyle\frac{ N }{ N_A }$

$N_A$
Avogadro's number
6.02e+23
$-$
9860
$N$
$N_s$
Number of ions
$-$
9850
$n$
$n_s$
Number of moles of the solute
$mol$
10505

ID:(3748, 2)



Number of moles with molar mass (2)

Equation

>Top, >Model


The number of moles ($n$) is determined by dividing the mass ($M$) of a substance by its the molar Mass ($M_m$), which corresponds to the weight of one mole of the substance.

Therefore, the following relationship can be established:

$ n_s = \displaystyle\frac{ M_s }{ M_{ms} }$

$ n = \displaystyle\frac{ M }{ M_m }$

$M$
$M_s$
Mass of solute
$kg$
10506
$M_m$
$M_{ms}$
Molar mass of the solute
$kg/mol$
10507
$n$
$n_s$
Number of moles of the solute
$mol$
10505

The number of moles ($n$) corresponds to the number of particles ($N$) divided by the avogadro's number ($N_A$):

$ n \equiv\displaystyle\frac{ N }{ N_A }$



If we multiply both the numerator and the denominator by the particle mass ($m$), we obtain:

$n=\displaystyle\frac{N}{N_A}=\displaystyle\frac{Nm}{N_Am}=\displaystyle\frac{M}{M_m}$



So it is:

$ n = \displaystyle\frac{ M }{ M_m }$

The molar mass is expressed in grams per mole (g/mol).

ID:(4854, 2)