
Poisson distributions
Storyboard 
In the case where the probability is very small, the binomial distribution is reduced to a Poisson distribution.
ID:(1555, 0)

Distribución binomial
Equation 
Con la probabilidad de que se de un numero definido de pasos a la derecha e izquierda esta dada por
W_N(n_1,n_2)=\displaystyle\frac{N!}{n_1!n_2!}p^{n_1}q^{n_2} |
con el número total de pasos es
N=n_1+n_2 |
y solo existe la probabilidad de ir a la derecha o a la izquierda, con se tiene para las probabilidades que
p+q=1 |
por lo que con se tiene la distribución binomial
W_N(n) =\displaystyle\frac{ N !}{ n !( N - n )!} p ^ n (1- p )^{ N - n } |
ID:(8961, 0)

Application of the Sterling Approach
Equation 
Therefore expressions such as
u!\sim\sqrt{2\pi u}\left(\displaystyle\frac{u}{e}\right)^u |
with what you get with
that is
N^n\sim\displaystyle\frac{N!}{(N-n)!} |
ID:(4738, 0)

Estimate N! p^n/(N-n)! if p\sim 0 and N\gg n
Equation 
With the approximation
N^n\sim\displaystyle\frac{N!}{(N-n)!} |
and employing
\lambda=Np |
it can be shown that
\displaystyle\frac{N!}{(N-n)!}p^n\sim \lambda^n |
ID:(8969, 0)

Estimate of (1-p)^{N-n} if p\sim 0 and N\gg n
Equation 
How the exponential is defined as
e^z\sim\left(1+\displaystyle\frac{z}{u}\right)^u |
and by entering
\lambda=Np |
you can replace
e^{-\lambda}\sim (1-p)^{N-n} |
ID:(8968, 0)

Probability for large N and small p
Equation 
Since the probability of taking
W_N(n) =\displaystyle\frac{ N !}{ n !( N - n )!} p ^ n (1- p )^{ N - n } |
for a large number
\displaystyle\frac{N!}{(N-n)!}p^n\sim \lambda^n |
and
e^{-\lambda}\sim (1-p)^{N-n} |
the binomial distribution is reduced to a Poisson distribution:
P_{\lambda}(n) =\displaystyle\frac{ \lambda ^ n }{ n! }e^{- \lambda } |
ID:(3369, 0)

Example comparison with Poisson distribution
Image 
If we study the binomial distribution for large numbers
ID:(7794, 0)

0
Video
Video: Poisson distributions