
Collisions
Equation 
In case the particles collide, the distribution function
\displaystyle\frac{df}{dt}\neq 0
Collisions cause particles of neighboring cells to undergo a collision that takes them to the cell under consideration and particles within the cell being expelled. The first leads to an increase of
\displaystyle\frac{df}{dt}=\displaystyle\frac{1}{\tau}(f_{in}-f_{out}) |
ID:(9077, 0)

Calculation of collisions
Equation 
In the case of collisions, two particles with velocity
\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_1',\vec{v}_2')d\vec{v}_1'd\vec{v}_2')
\\n\\nAs the probability that the particles entering the collision are
f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)
and the displacement occurs as a function of the relative velocity
f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22 |
ID:(9078, 0)

Collisions that contribute
Equation 
In the case of contributions to the cell, consider
f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22 |
Integrating on the speeds that initiate the collision and one of the resulting ones since the other is the contribution to the local distribution function
\displaystyle\frac{1}{\tau}f_{in}(\vec{v})=\displaystyle\int d\vec{v}_1d\vec{v}_2d\vec{v}_12f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}) |
ID:(9079, 0)

Collisions leaving the cell
Equation 
In the case that they leave the cell it is considered
f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22 |
Integrating on one of the speeds that initiate the collision and both resulting since the other is the contribution to the local distribution function
\displaystyle\frac{1}{\tau}f_{out}(\vec{v})=\displaystyle\int d\vec{v}_1d\vec{v}_12d\vec{v}_22f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v},t)|\vec{v}-\vec{v}_1|\sigma(\vec{v},\vec{v}_1\rightarrow\vec{v}_12,\vec{v}_22) |
ID:(9080, 0)

Total collisions
Equation 
With the term collisions that contribute
f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22 |
and those that reduce particles
\displaystyle\frac{1}{\tau}f_{in}(\vec{v})=\displaystyle\int d\vec{v}_1d\vec{v}_2d\vec{v}_12f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}) |
you get the total exchange factor
\displaystyle\frac{1}{\tau}(f_{in}-f_{out})=\displaystyle\int d\vec{v}_1d\vec{v}2d\vec{v}_12(f(\vec{x},\vec{v}2,t)f(\vec{x},\vec{v}_12,t)-f(\vec{x},\vec{v},t)f(\vec{x},\vec{v}_1,t))|\vec{v}-\vec{v}_1|\sigma(\vec{v},\vec{v}_1\rightarrow\vec{v}2,\vec{v}_12) |
ID:(9081, 0)