Aproximación por distribución Maxwell Boltzmann
Equation
En primera aproximación se puede suponer que la función distribución debe de asumir la forma de una distribución de Maxwell Boltzmann, es decir
$f^{(0)}(\vec{x},\vec{v},t)=c(\vec{x},t)\left(\displaystyle\frac{m\beta}{2\pi}\right)^{3/2}e^{-\beta m(\vec{v}-\vec{u}(\vec{x},t))^2/2}$ |
ID:(9082, 0)
Relaxation Approach
Equation
One way to solve Boltzmann's general equation is to linearize the equation by assuming that the collision term can be written as the difference between the distribution function and the equilibrium solution represented by the distribution function of Maxwell Boltzmann
$\displaystyle\frac{df}{dt}=-\displaystyle\frac{1}{\tau}(f-f^{(0)})$ |
ID:(9083, 0)
Bhatnagar-Gross-Krook Approach
Equation
En la aproximación Bhatnagar-Gross-Krook la distribución en equilibrio se asume como la de un gas de partículas sin interacción
$f^{(0)}(\vec{x},\vec{v},t)=c(\vec{x},t)\left(\displaystyle\frac{m\beta}{2\pi}\right)^{3/2}e^{-\beta m(\vec{v}-\vec{u}(\vec{x},t))^2/2}$ |
con
$f_i^{eq}=\rho\omega_i\left(1+\displaystyle\frac{3\vec{u}\cdot\vec{e}_i}{c}+\displaystyle\frac{9(\vec{u}\cdot\vec{e}_i)^2}{2c^2}-\displaystyle\frac{3u^2}{2c^2}\right)$ |
con
Modelo | $\omega_i$ | Index |
1DQ3 | ? | i=0 |
- | ? | i=1, 2 |
2DQ9 | 4/9 | i=0 |
- | 1/9 | i=1,...,4 |
- | 1/36 | i=5,...,8 |
3DQ15 | 1/3 | i=0 |
- | 1/18 | i=1,...,6 |
- | 1/36 | i=7,...,14 |
3DQ19 | ? | i=0 |
- | ? | i=1,...,6 |
- | ? | i=7,...,18 |
que se determinan asegurando que la distribución equilibrio cumpla las leyes de conservación.
ID:(9084, 0)
Streaming
Equation
In the streaming process the particles are moved according to their velocity directions to neighboring cells
$f_i(\vec{x},t)\leftarrow f_i(\vec{x}+ce_i\delta t,t+\delta t)$ |
where
ID:(9150, 0)
Discretization function
Equation
In the case of the discretization in the LBM models we work not with functions of the speed if not with discrete components. In this way the
$f_i(\vec{x},t)=w_if(\vec{x},\vec{v}_i,t)$ |
where
ID:(8466, 0)