Utilisateur:


Loi de Snell

Storyboard

>Modèle

ID:(302, 0)



Indice de réfraction

Équation

>Top, >Modèle


Si $n$ est l'indice de réfraction dans un milieu et $\lambda$ est la longueur d'onde dans le vide, alors lors de la propagation dans le milieu, la longueur d'onde $\lambda_m$ sera

$ n =\displaystyle\frac{ \lambda }{ \lambda_m }$

$\lambda$
Longueur d'onde lumineuse
$m$
4997

L'énergie d'une onde ou d'une particule (photon) de lumière est donnée par

$ \epsilon = h \nu $



Lorsque cette énergie se propage d'un milieu, par exemple, un vide avec une vitesse de la lumière $c$, vers un autre milieu avec une vitesse de la lumière $c_m$, on en déduit que la fréquence de la lumière reste inchangée. Cependant, cela implique que, puisque la vitesse de la lumière est égale au produit de la fréquence et de la longueur d'onde, comme indiqué dans l'équation

$ c = \nu \lambda $



la longueur d'onde doit changer lorsqu'elle passe d'un milieu à un autre.

Par conséquent, si nous avons une longueur d'onde de la lumière dans un milieu $\lambda_m$ et dans le vide $\lambda$, l'indice de réfraction peut être défini comme

$ n =\displaystyle\frac{ c }{ v }$



et peut être exprimé comme

$n=\displaystyle\frac{c}{c_m}=\displaystyle\frac{\lambda\nu}{\lambda_m\nu}=\displaystyle\frac{\lambda}{\lambda_m}$



En d'autres termes,

$ n =\displaystyle\frac{ \lambda }{ \lambda_m }$

ID:(9776, 0)



Indice de réfraction

Équation

>Top, >Modèle


L'indice de réfraction, noté $n$, est défini comme le rapport de la vitesse de la lumière dans le vide, notée $c$, à la vitesse de la lumière dans le milieu, notée $c_m$:

$ n =\displaystyle\frac{ c }{ v }$

$c$
Surface de la fontaine
299792458
$m/s$
4999

ID:(3192, 0)