Benützer:


Lichtinterferenz durch zwei Quellen

Storyboard

Wenn sich Licht von zwei Quellen oder Rillen überlappt, werden Punkte in dem Raum beobachtet, in dem konstruktive und andere zerstörerische Interferenz erzeugende Bereiche größerer Intensität oder Nullintensität vorhanden sind.

>Modell

ID:(1271, 0)



Mechanismen

Iframe

>Top




Code
Konzept

Mechanismen

ID:(16088, 0)



El concepto de interferencia

Bild

>Top


La interferencia ocurre cuando dos haces se superponen en un punto del espacio y con ello sus amplitudes se suman. Esto puede llevar a

• ambas tienen fases similares con lo que sus amplitudes son ambas positivas o negativas lo que lleva a una interferencia constructiva y a un aumento de la señal
• las fases difieren de modo que los signos de las amplitudes son mayormente distintos con lo que la interferencia es destructiva y la señal se reduce e incluso puede anularse

ID:(12495, 0)



El caso de dos rentijas

Bild

>Top


Cuando se tienen dos rendijas se puede observar como la onda plana pasa a generar dos ondas esféricas que generan un campo de onda en que se observan las distintas interferencias. Si se localiza a alguna distancia una pantalla se puede observar el perfil de dichas interferencias creándose casos de interferencia constructiva como destructiva:

ID:(12496, 0)



Calculo de la interferencia en la pantalla

Bild

>Top


Si se asume que la pantalla se encuentra a una distancia mucho mayor que aquella entre ambas fuentes (rendijas) se puede estimar el desface de ambas señales en forma relativamente simple:

ID:(12497, 0)



Patrón de interferencia

Bild

>Top


Si se diagrama la intensidad registrada en la pantalla se vera lo que se denomina el típico patrón de interferencia:

ID:(12498, 0)



Modell

Top

>Top




Parameter

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten
$\theta_c$
theta_c
Ángulo entre normal y línea de interferencia constructiva
rad
$\theta_d$
theta_d
Ángulo entre normal y línea de interferencia destructiva
rad
$\pi$
pi
Pi
rad

Variablen

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten

Berechnungen


Zuerst die Gleichung auswählen: zu , dann die Variable auswählen: zu

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

Variable Gegeben Berechnen Ziel : Gleichung Zu verwenden




Gleichungen

#
Gleichung

$ \left( n_d + \displaystyle\frac{1}{2}\right) \lambda = d \sin \theta_d $

( n_d + 1/2)* lambda = d *sin( theta_d )


$ I = I_0 \cos^2 \displaystyle\frac{ \phi }{2}$

I = I_0 *cos( phi /2)^2


$ n_c \lambda = d \sin \theta_c $

n_c * lambda = d * sin( theta_c )


$ \phi =\displaystyle\frac{2 \pi }{ \lambda }( r_2 - r_1 )$

phi =2* pi *( r_2 - r_1 )/ lambda


$ y_m =\displaystyle\frac{ \Delta }{ d } n_c \lambda $

y_m = Delta * n_c * lambda / d

ID:(16082, 0)



Konstruktive Interferenz mit zwei Quellen

Gleichung

>Top, >Modell


Para que la interferencia sea constructiva es necesario que la diferencia de camino sea un múltiplo de el largo de onda\\n\\n

$\Delta l = n \lambda$

\\n\\nPor ello, como el largo es el cateto opuesto de un triangulo en que la hipotenusa es igual a la distancia entre ambas fuentes o rendijas se tiene\\n\\n

$\Delta l = d \sin\theta$



De ambas ecuaciones se tiene entonces que

$ n_c \lambda = d \sin \theta_c $

$\theta_c$
Ángulo entre normal y línea de interferencia constructiva
$rad$
8438

ID:(10938, 0)



Zerstörerische Interferenz mit zwei Quellen

Gleichung

>Top, >Modell


Para que la interferencia sea destructiva es necesario que la diferencia de camino sea un múltiple mas un medio del largo de onda\\n\\n

$\Delta l =\left( n + \displaystyle\frac{1}{2}\right) \lambda$

\\n\\nPor ello, como el largo es el cateto opuesto de un triangulo en que la hipotenusa es igual a la distancia entre ambas fuentes o rendijas se tiene\\n\\n

$\Delta l = d \sin\theta$



De ambas ecuaciones se tiene entonces que

$ \left( n_d + \displaystyle\frac{1}{2}\right) \lambda = d \sin \theta_d $

$\theta_d$
Ángulo entre normal y línea de interferencia destructiva
$rad$
9955

ID:(10939, 0)



Glänzende Gürtelposition

Gleichung

>Top, >Modell


Con la distancia \Delta entre las fuentes y la pantalla, el n avo máximo se encontraran a una distancia y_n y bajo un angulo \theta_n de modo de que \\n\\n

$\tan\theta_n = \displaystyle\frac{y_n}{\Delta}$

\\n\\nPara ángulos pequeños la función tangente se puede aproximar por el seno\\n\\n

$ \tan \theta_n \sim \sin \theta_n $



por lo que la posición de los máximo es

$ n_c \lambda = d \sin \theta_c $



por lo que las posiciones de los máximos es

$ y_m =\displaystyle\frac{ \Delta }{ d } n_c \lambda $

ID:(10940, 0)



Intensität in einer Position

Gleichung

>Top, >Modell


Si que existe un desfase

$ \phi =\displaystyle\frac{2 \pi }{ \lambda }( r_2 - r_1 )$



se tendrá que la intensidad es igual a

$ I = I_0 \cos^2 \displaystyle\frac{ \phi }{2}$

ID:(10941, 0)



Phasendifferenz

Gleichung

>Top, >Modell


La diferencia de fase de da por la diferencia en los caminos recorridos. Si se denotan se tendra que

$ \phi =\displaystyle\frac{2 \pi }{ \lambda }( r_2 - r_1 )$

$\pi$
Pi
3.1415927
$rad$
5057

ID:(10942, 0)



0
Video

Video: Interferencia de la luz de dos Fuentes