Utilizador:


Redes de elementos hidráulicos

Storyboard

Ao compararmos a lei de Darcy com a lei de Ohm na eletricidade, percebemos uma analogia em que o fluxo do líquido se assemelha à corrente elétrica, a diferença de pressão se relaciona com a diferença de potencial e os elementos hidráulicos são comparados às suas resistências hidráulicas, de forma semelhante aos resistores elétricos.

Essa analogia implica que, assim como existem redes elétricas, também é possível definir redes hidráulicas nas quais as resistências hidráulicas totais são calculadas com base nas resistências hidráulicas parciais.

>Modelo

ID:(1388, 0)



Redes hidrodinâmicas

Descrição

>Top


Na natureza, existem múltiplos sistemas que podem ser representados como redes hidrodinâmicas, onde cada elemento pode ser atribuído uma resistência hidráulica. Esses sistemas incluem desde redes de vasos sanguíneos em organismos vivos até redes de distribuição de água em plantas ou redes de rios e córregos em ecossistemas. O conceito de resistência hidráulica nos permite compreender como o fluido flui e se distribui nesses sistemas, além de analisar sua eficiência e comportamento. O estudo de redes hidrodinâmicas é fundamental para entender fenômenos naturais e projetar sistemas artificiais eficientes.

ID:(11098, 0)



Condutância Hidráulica de um Tubo

Equação

>Top, >Modelo


Se observarmos a lei de Hagen-Poiseuille, que nos permite calcular o fluxo de volume ($J_V$) a partir de o raio do cilindro ($R$), la viscosidade ($\eta$), o comprimento do tubo ($\Delta L$) e la diferença de pressão ($\Delta p$):

$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$



podemos identificar parâmetros relacionados com a geometria (o comprimento do tubo ($\Delta L$) e o raio do cilindro ($R$)) e o tipo de líquido (la viscosidade ($\eta$)), que podem ser designados coletivamente como uma condutância hidráulica ($G_h$):

$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$

$\Delta L$
Comprimento do tubo
$m$
$G_h$
Condutância hidráulica
$m^4/kg s$
$\pi$
Pi
3.1415927
$rad$
$R$
Raio do cilindro
$m$
$\eta$
Viscosidade
$Pa s$

ID:(15102, 0)



Lei de Darcy e condutância hidráulica

Equação

>Top, >Modelo


Com a introdução de la condutância hidráulica ($G_h$), podemos reescrever a equação de Hagen-Poiseuille com la diferença de pressão ($\Delta p$) e o fluxo de volume ($J_V$) usando a seguinte equação:

$ J_V = G_h \Delta p $

$G_h$
Condutância hidráulica
$m^4/kg s$
$\Delta p$
Diferença de pressão
$Pa$
$J_V$
Fluxo de volume
$m^3/s$

Se observarmos a lei de Hagen-Poiseuille, que nos permite calcular o fluxo de volume ($J_V$) a partir de o raio do cilindro ($R$), la viscosidade ($\eta$), o comprimento do tubo ($\Delta L$) e la diferença de pressão ($\Delta p$):

$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$



podemos introduzir la condutância hidráulica ($G_h$), definido em termos de o comprimento do tubo ($\Delta L$), o raio do cilindro ($R$) e la viscosidade ($\eta$), da seguinte forma:

$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$



para obter:

$ J_V = G_h \Delta p $

ID:(14471, 0)



Condutância hidráulica

Equação

>Top, >Modelo


No contexto da resistência elétrica, existe o seu inverso, conhecido como a condutância elétrica. Da mesma forma, o que seria la condutância hidráulica ($G_h$) pode ser definido em termos de la resistência hidráulica ($R_h$) através da expressão:

$ R_h = \displaystyle\frac{1}{G_h }$

$G_h$
Condutância hidráulica
$m^4/kg s$
$R_h$
Resistência hidráulica
$kg/m^4s$

ID:(15092, 0)



Resistência hidráulica de um tubo

Equação

>Top, >Modelo


Como la resistência hidráulica ($R_h$) é igual ao inverso de la condutância hidráulica ($G_h$), ele pode ser calculado a partir da expressão deste último. Dessa forma, podemos identificar parâmetros relacionados à geometria (o comprimento do tubo ($\Delta L$) e o raio do cilindro ($R$)) e ao tipo de líquido (la viscosidade ($\eta$)), que podem ser denominados coletivamente como uma resistência hidráulica ($R_h$):

$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$

$\Delta L$
Comprimento do tubo
$m$
$\pi$
Pi
3.1415927
$rad$
$R$
Raio do cilindro
$m$
$R_h$
Resistência hidráulica
$kg/m^4s$
$\eta$
Viscosidade
$Pa s$

Uma vez que la resistência hidráulica ($R_h$) é igual a la condutância hidráulica ($G_h$) conforme a seguinte equação:

$ R_h = \displaystyle\frac{1}{G_h }$



e uma vez que la condutância hidráulica ($G_h$) é expresso em termos de la viscosidade ($\eta$), o raio do cilindro ($R$) e o comprimento do tubo ($\Delta L$) da seguinte forma:

$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$



podemos concluir que:

$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$

ID:(3629, 0)



Lei de Darcy e resistência hidráulica

Equação

>Top, >Modelo


Uma vez que o fluxo de volume ($J_V$) pode ser calculado a partir de la condutância hidráulica ($G_h$) e la diferença de pressão ($\Delta p$) usando a seguinte equação:

$ J_V = G_h \Delta p $



ele pode ser expresso em termos de la diferença de pressão ($\Delta p$). Considerando que o inverso de la resistência hidráulica ($R_h$) é La condutância hidráulica ($G_h$), chegamos à seguinte expressão:

$ \Delta p = R_h J_V $

$J_V$
Fluxo de volume
$m^3/s$
$R_h$
Resistência hidráulica
$kg/m^4s$

No caso de um único cilindro la resistência hidráulica ($R_h$), que depende de la viscosidade ($\eta$), o comprimento do tubo ($\Delta L$) e o raio do cilindro ($R$), é calculado usando a seguinte equação:

$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$



Por outro lado, a lei de Hagen-Poiseuille permite calcular o fluxo de volume ($J_V$) gerado por la diferença de pressão ($\Delta p$) de acordo com a seguinte equação:

$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$



Combinando ambas as equações, obtemos a lei de Darcy:

$ \Delta p = R_h J_V $

que Henry Darcy formulou para modelar o comportamento geral de meios porosos mais complexos através dos quais um líquido flui.

A genialidade dessa maneira de reescrever a lei de Hagen-Poiseuille está em mostrar a analogia entre o fluxo de corrente elétrica e o fluxo de líquido. Nesse sentido, a lei de Hagen-Poiseuille corresponde à lei de Ohm. Isso abre a possibilidade de aplicar os conceitos de redes elétricas a sistemas de tubulações através das quais um líquido flui.

Essa lei, também conhecida como Lei de Darcy-Weisbach, foi publicada pela primeira vez na obra de Darcy:

• "Les fontaines publiques de la ville de Dijon" ("As Fontes Públicas da Cidade de Dijon"), Henry Darcy, Victor Dalmont Editeur, Paris (1856).

ID:(3179, 0)



Soma de fluxos paralelos

Equação

>Top, >Modelo


A soma das camadas de solo em paralelo, representada por o fluxo total ($J_{Vt}$), é igual à soma de o fluxo de volume em uma rede ($J_{Vk}$):

$ J_{Vt} =\displaystyle\sum_k J_{Vk} $

$J_{Vk}$
Cálculo da equação de porosidade
$-$

.

ID:(4376, 0)



Soma das pressões em série

Equação

>Top, >Modelo


La diferença total de pressão ($\Delta p_t$) em relação às várias diferença de pressão em uma rede ($\Delta p_k$), levando-nos à seguinte conclusão:

$ \Delta p_t =\displaystyle\sum_k \Delta p_k $

ID:(4377, 0)