Translational kinetic energy

Storyboard

The kinetic energy of translation is a function of the velocity achieved through the application of a force over a given time while traveling a given path.

Thus, the kinetic energy of translation is proportional to the mass of the object and the square of the velocity.

>Model

ID:(753, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15526, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$m_i$
m_i
Inertial Mass
kg
$m$
m
Point Mass
kg
$K_t$
K_t
Translational Kinetic Energy
J

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$v$
v
Speed
m/s
$\vec{v}$
&v
Speed (Vector)
m/s

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ K_t =\displaystyle\frac{1}{2} m \vec{v} \cdot \vec{v} $

K_t = m * &v . &v / 2


$ K_t =\displaystyle\frac{1}{2} m_i v ^2$

K_t = m_i * v ^2/2

ID:(15471, 0)



Translational Kinetic Energy

Equation

>Top, >Model


In the case of studying translational motion, the definition of energy

$ dW = \vec{F} \cdot d\vec{s} $



is applied to Newton's second law

$ F = m_i a $



resulting in the expression

$ K_t =\displaystyle\frac{1}{2} m_i v ^2$

$m_i$
Inertial Mass
$kg$
6290
$v$
Speed
$m/s$
6029
$K_t$
Translational Kinetic Energy
$J$
5288

The energy required for an object to transition from velocity $v_1$ to velocity $v_2$ can be calculated using the definition with

$ dW = \vec{F} \cdot d\vec{s} $



Using the second law of Newton, this expression can be rewritten as

$\Delta W = m a \Delta s = m\displaystyle\frac{\Delta v}{\Delta t}\Delta s$



Employing the definition of velocity with

$ \bar{v} \equiv\displaystyle\frac{ \Delta s }{ \Delta t }$



we obtain

$\Delta W = m\displaystyle\frac{\Delta v}{\Delta t}\Delta s = m v \Delta v$



where the difference in velocities is

$\Delta v = v_2 - v_1$



Furthermore, the velocity itself can be approximated by the average velocity

$v = \displaystyle\frac{v_1 + v_2}{2}$



Using both expressions, we arrive at

$\Delta W = m v \Delta v = m(v_2 - v_1)\displaystyle\frac{(v_1 + v_2)}{2} = \displaystyle\frac{m}{2}(v_2^2 - v_1^2)$



Thus, the change in energy is given by

$\Delta W = \displaystyle\frac{m}{2}v_2^2 - \displaystyle\frac{m}{2}v_1^2$



In this way, we can define kinetic energy

$ K_t =\displaystyle\frac{1}{2} m_i v ^2$

ID:(3244, 0)



Translational kinetic energy (vector)

Equation

>Top, >Model


The kinetic energy of one-dimensional translation is equal to

$ K_t =\displaystyle\frac{1}{2} m_i v ^2$



so in the multidimensional case,

$ K_t =\displaystyle\frac{1}{2} m \vec{v} \cdot \vec{v} $

$m$
Point Mass
$kg$
6281
$\vec{v}$
Speed (Vector)
$m/s$
4969
$K_t$
Translational Kinetic Energy
$J$
5288

The kinetic energy of one-dimensional translation

$ K_t =\displaystyle\frac{1}{2} m_i v ^2$



can be generalized in vector form by replacing the square with a dot product

$\vec{v}^2=\vec{v}\cdot\vec{v}$



resulting in

$ K_t =\displaystyle\frac{1}{2} m \vec{v} \cdot \vec{v} $

ID:(7110, 0)