Énergie cinétique translationnelle
Storyboard 
L'énergie cinétique de translation est une fonction de la vitesse atteinte grâce à l'application d'une force sur une certaine durée tout en parcourant une certaine distance. Ainsi, l'énergie cinétique de translation est proportionnelle à la masse de l'objet et au carré de la vitesse.
ID:(753, 0)
Énergie cinétique translationnelle
Description 
L'énergie cinétique de translation est une fonction de la vitesse atteinte grâce à l'application d'une force sur une certaine durée tout en parcourant une certaine distance. Ainsi, l'énergie cinétique de translation est proportionnelle à la masse de l'objet et au carré de la vitesse.
Variables
Calculs
Calculs
Équations
(ID 3202)
L' nergie n cessaire pour qu'un objet passe de la vitesse angulaire $\omega_1$ la vitesse angulaire $\omega_2$ peut tre calcul e l'aide de la d finition
| $ \Delta W = T \Delta\theta $ |
Avec la deuxi me loi de Newton, nous pouvons r crire cette expression comme
$\Delta W=I \alpha \Delta\theta=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta$
En utilisant la d finition de la vitesse angulaire
| $ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$ |
nous obtenons
$\Delta W=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta=I,\omega,\Delta\omega$
La diff rence entre les vitesses angulaires est
$\Delta\omega=\omega_2-\omega_1$
D'autre part, la vitesse angulaire elle-m me peut tre approxim e par la vitesse angulaire moyenne
$\omega=\displaystyle\frac{\omega_1+\omega_2}{2}$
En utilisant ces deux expressions, nous obtenons l' quation
$\Delta W=I \omega \Delta \omega=I(\omega_2-\omega_1)\displaystyle\frac{(\omega_1+\omega_2)}{2}=\displaystyle\frac{I}{2}(\omega_2^2-\omega_1^2)$
Ainsi, l' nergie varie selon
$\Delta W=\displaystyle\frac{I}{2}\omega_2^2-\displaystyle\frac{I}{2}\omega_1^2$
Nous pouvons utiliser cela pour d finir l' nergie cin tique
| $ K_t =\displaystyle\frac{1}{2} m_i v ^2$ |
(ID 3244)
L' nergie n cessaire pour qu'un objet passe de la vitesse angulaire $\omega_1$ la vitesse angulaire $\omega_2$ peut tre calcul e l'aide de la d finition
| $ \Delta W = T \Delta\theta $ |
Avec la deuxi me loi de Newton, nous pouvons r crire cette expression comme
$\Delta W=I \alpha \Delta\theta=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta$
En utilisant la d finition de la vitesse angulaire
| $ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$ |
nous obtenons
$\Delta W=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta=I,\omega,\Delta\omega$
La diff rence entre les vitesses angulaires est
$\Delta\omega=\omega_2-\omega_1$
D'autre part, la vitesse angulaire elle-m me peut tre approxim e par la vitesse angulaire moyenne
$\omega=\displaystyle\frac{\omega_1+\omega_2}{2}$
En utilisant ces deux expressions, nous obtenons l' quation
$\Delta W=I \omega \Delta \omega=I(\omega_2-\omega_1)\displaystyle\frac{(\omega_1+\omega_2)}{2}=\displaystyle\frac{I}{2}(\omega_2^2-\omega_1^2)$
Ainsi, l' nergie varie selon
$\Delta W=\displaystyle\frac{I}{2}\omega_2^2-\displaystyle\frac{I}{2}\omega_1^2$
Nous pouvons utiliser cela pour d finir l' nergie cin tique
| $ K_t =\displaystyle\frac{1}{2} m_i v ^2$ |
(ID 3244)
La d finition de a accélération moyenne ($\bar{a}$) est consid r e comme la relation entre a différence de vitesse ($\Delta v$) et le temps écoulé ($\Delta t$). C'est- -dire,
| $ dv \equiv v - v_0 $ |
et
| $ \Delta t \equiv t - t_0 $ |
La relation entre les deux est d finie comme a accélération centrifuge ($a_c$)
| $ \bar{a} \equiv\displaystyle\frac{ \Delta v }{ \Delta t }$ |
pendant cet intervalle de temps.
(ID 3678)
Si l’on part de a vitesse ($s_0$) et que l’on souhaite calculer a distance parcourue en un temps ($\Delta s$), il est nécessaire de définir une valeur pour a position ($s$). Dans un système unidimensionnel, a distance parcourue en un temps ($\Delta s$) est simplement obtenu en soustrayant a vitesse ($s_0$) de a position ($s$), ce qui donne :
| $ \Delta s = s - s_0 $ |
(ID 4352)
(ID 4355)
tant donn que le moment ($p$) est d fini avec a masse d'inertie ($m_i$) et a vitesse ($v$),
| $ p = m_i v $ |
Si a masse d'inertie ($m_i$) est gal a masse initiale ($m_0$), alors nous pouvons d river la quantit de mouvement par rapport au temps et obtenir a force à masse constante ($F$) :
$F=\displaystyle\frac{d}{dt}p=m_i\displaystyle\frac{d}{dt}v=m_ia$
Par cons quent, nous en concluons que
| $ F = m_i a $ |
(ID 10975)
Exemples
(ID 15526)
(ID 15471)
A écart de travail ($\Delta W$) est défini comme le produit de a force à masse constante ($F$) et a distance parcourue en un temps ($\Delta s$) :
| $ \Delta W = F \Delta s $ |
(ID 3202)
Nous pouvons calculer a distance parcourue en un temps ($\Delta s$) à partir de a vitesse ($s_0$) et a position ($s$) à laide de léquation suivante :
| $ \Delta s = s - s_0 $ |
(ID 4352)
A énergie cinétique translationnelle ($K_t$) est déterminé en fonction de a vitesse angulaire ($\omega$) et de a masse d'inertie ($m_i$), selon :
| $ K_t =\displaystyle\frac{1}{2} m_i v ^2$ |
5288 est associé à 6290 et non à 8762, bien quils soient numériquement égaux. Lénergie quun objet possède est la conséquence directe de linertie quil a fallu surmonter pour le mettre en mouvement.
(ID 3244)
A énergie cinétique translationnelle ($K_t$) est déterminé en fonction de a vitesse angulaire ($\omega$) et de a masse d'inertie ($m_i$), selon :
| $ K_t =\displaystyle\frac{1}{2} m_i v ^2$ |
5288 est associé à 6290 et non à 8762, bien quils soient numériquement égaux. Lénergie quun objet possède est la conséquence directe de linertie quil a fallu surmonter pour le mettre en mouvement.
(ID 3244)
La proportion dans laquelle la variation de la vitesse au fil du temps est d finie est a accélération moyenne ($\bar{a}$). Pour la mesurer, il est n cessaire d'observer a différence de vitesse ($\Delta v$) et le temps écoulé ($\Delta t$). Une m thode courante pour mesurer l'acc l ration moyenne consiste utiliser une lampe stroboscopique qui illumine l\'objet des intervalles d finis. En prenant une photographie, on peut d terminer la distance parcourue par l\'objet pendant ce temps. En calculant deux vitesses cons cutives, on peut d terminer leur variation et, avec le temps coul entre les photos, l\'acc l ration moyenne. L\' quation qui d crit l\'acc l ration moyenne est la suivante :
| $ \bar{a} \equiv\displaystyle\frac{ \Delta v }{ \Delta t }$ |
Il est important de noter que l\'acc l ration moyenne est une estimation de l\'acc l ration r elle.
Le principal probl me est que si l\'acc l ration varie pendant le temps coul , la valeur de l\'acc l ration moyenne peut diff rer consid rablement de l\'acc l ration moyenne r elle.
Par cons quent, la cl est de
D terminer l\'acc l ration sur une p riode de temps suffisamment courte pour minimiser la variation.
(ID 3678)
Dans le cas o a masse d'inertie ($m_i$) est gal a masse initiale ($m_0$),
| $ m_g = m_i $ |
la d riv e de la quantit de mouvement sera gale la masse multipli e par la d riv e de a vitesse ($v$). Comme la d riv e de la vitesse est a accélération instantanée ($a$), nous avons que a force à masse constante ($F$) est gal
| $ F = m_i a $ |
(ID 10975)
Pour d crire le mouvement d'un objet, nous devons calculer le temps écoulé ($\Delta t$). Cette grandeur est obtenue en mesurant le temps initial ($t_0$) et le le temps ($t$) de ce mouvement. La dur e est d termin e en soustrayant le temps initial du temps final :
| $ \Delta t \equiv t - t_0 $ |
(ID 4353)
L'acc l ration correspond la variation de la vitesse par unit de temps. Il est donc n cessaire de d finir a différence de vitesse ($\Delta v$) en fonction de a vitesse ($v$) et a vitesse initiale ($v_0$) comme suit :
| $ dv \equiv v - v_0 $ |
(ID 4355)
ID:(753, 0)
