Processing math: 0%
User: No user logged in.


Ground Flow

Storyboard

In the case of soil, it can be modeled by assuming that it contains multiple pores that form small capillaries running through it. Based on this, equations for laminar flow through tubes can be applied, and the hydraulic resistances of capillary networks can be calculated. These resistances depend on the porosity and, thus, on the proportion of the different components.

>Model

ID:(370, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15203, 0)



Flow through the ground

Concept

>Top


The individual pores come together to form chains that create capillaries through which water flows.

To model this phenomenon, it is necessary to estimate both the radius of these capillaries and their length, considering that they are typically not straight.

ID:(937, 0)



Porosity volume ratio

Concept

>Top


![](showImage.php)

ID:(2284, 0)



Sample pore section

Concept

>Top


The section Flow (S) includes the pore section (S_p) generated by the number of capillaries (N_p):

None

ID:(2285, 0)



Relationship between number of grains and pores

Concept

>Top


If we observe a cross-section of the soil, we'll notice that capillaries pass through the spaces between the grains. By doing so, their number is similar to that of the grains themselves, so we can assume that the number of capillaries (N_p) is similar to the number of grains present in the cross-section:

None

ID:(2283, 0)



Own porosity and capillaries

Concept

>Top


![](showImage.php)

ID:(2291, 0)



Flow through individual pores

Concept

>Top


The total flow is calculated as the sum of the individual flows through the different pores:

None



If we assume that all the pores are identical, we can obtain the total flow (J_{Vt}) by multiplying the volume flow (J_V) individually by the number of capillaries (N_p).

ID:(2286, 0)



Soil hydraulic conductivity

Equation

>Top, >Model


The flow of liquid in a porous medium such as soil is measured using the variable the flux density (j_s), which represents the average velocity at which the liquid moves through it. When modeling the soil and how the liquid passes through it, it is found that this process is influenced by factors such as the porosity (f) and the radius of a generic grain (r_0), which, when greater, facilitate the flow, whereas the viscosity (\eta) hinders passage through capillaries, reducing the flow velocity.

The modeling eventually incorporates what we will call the hydraulic conductivity (K_s), a variable that depends on the interactions between the radius of a generic grain (r_0), the porosity (f), the liquid density (\rho_w), the gravitational Acceleration (g), the viscosity (\eta), and the generic own porosity (q_0):

K_s \equiv \displaystyle\frac{ r_0 ^2 }{8 q_0 }\displaystyle\frac{ f ^3 }{(1- f )^2}\displaystyle\frac{ \rho_w g }{ \eta }

R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

Since the flux density (j_s) is related to the radius of a generic grain (r_0), the porosity (f), the liquid density (\rho_w), the gravitational Acceleration (g), the viscosity (\eta), the generic own porosity (q_0), the height difference (\Delta h), and the sample length (\Delta L) through the equation:

j_s =-\displaystyle\frac{ r_0 ^2 }{8 q_0 }\displaystyle\frac{ f ^3 }{(1- f )^2}\displaystyle\frac{ \rho_w g }{ \eta }\displaystyle\frac{ \Delta h }{ \Delta L }



We can define a factor that we'll call the hydraulic conductivity (K_s) as follows:

K_s \equiv \displaystyle\frac{ r_0 ^2 }{8 q_0 }\displaystyle\frac{ f ^3 }{(1- f )^2}\displaystyle\frac{ \rho_w g }{ \eta }

This factor encompasses all the elements related to the properties of both the soil and the liquid that flows through it.



the hydraulic conductivity (K_s) expresses how easily the liquid is conducted through the porous medium. In fact, the hydraulic conductivity (K_s) increases with the porosity (f) and the radius of a generic grain (r_0), and decreases with the generic own porosity (q_0) and the viscosity (\eta).

ID:(4739, 0)



Hydraulic conductivity for different soils

Image

>Top


If we examine the literature, we can find estimates of hydraulic conductivity for different soil textures, which are shown here as a function of their exponent (i.e., -7 is indicated for a hydraulic conductivity of 1E-7 m/s):



The results are summarized in the following table:

Texture g_a [%] g_i [%] g_c [%] f [%] K [m/s]
Clay 0-45 0-40 55-100 40-50 1E-9 - 1E-8 [1]
Loam 23-52 28-50 8-27 40-50 1E-7 - 1E-5 [2]
Sand 85-100 0-15 0-10 25-35 1E-4 - 1E-2 [3]
Silt 0-20 80-100 0-13 35-45 1E-7 - 1E-5 [4]
Silty Clay 0-20 40-60 40-60 40-50 1E-9 - 1E-8 [1]
Sandy Clay 45-65 0-20 35-55 35-45 1E-7 - 1E-5 [5]
Sandy Loam 20-45 15-53 28-40 40-50 1E-7 - 1E-5 [2]
Clayey Silt 0-20 40-73 28-40 40-50 1E-8 - 1E-6 [6]
Sandy Clayey Loam 45-80 0-33 20-35 35-45 1E-6 - 1E-4 [1]
Silt Loam 0-50 50-88 0-28 35-45 1E-7 - 1E-5 [4]
Sandy Loam 43-85 0-50 0-20 30-40 1E-5 - 1E-3 [2]
Sandy Silty Loam 70-90 0-30 0-15 25-35 1E-4 - 1E-2 [4]

These data were obtained from the following literature, which is referenced in the hydraulic conductivity column:

[1] "Geotechnical Engineering Principles and Practices" by Donald P. Coduto et al., Prentice Hall (1999)

[2] "Soil Mechanics and Foundations" by Muni Budhu, John Wiley & Sons. (2011)

[3] "Introduction to Environmental Engineering" by Mackenzie Davis and David Cornwell, McGraw Hill (2022)

[4] "Principles of Geotechnical Engineering" by Braja M. Das, CL-Engineering (2009)

[5] "Soil Mechanics in Engineering Practice" by Karl Terzaghi and Ralph B. Peck, John Wiley & Sons. (1996)

[6] "Soil Mechanics: Concepts and Applications" by William Powrie, CRC Press (2013)

ID:(4740, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
\rho_w
rho_w
Liquid density
kg/m^3
\pi
pi
Pi
rad
\eta_w
eta_w
Water Viscosity
Pa s

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
L
L
Capillary length
m
J_V
J_V
Hagen-Poiseuille Law
m^3/s
J_{Vt}
J_Vt
Hagen-Poiseuille law for soil
m^3/s
\Delta h
Dh
Height of liquid column
m
N_p
N_p
Number of capillaries
-
S_p
S_p
Pore section
m^2
f
f
Porosity
-
R
R
Porosity Radio
m
\Delta p_2
Dp_2
Pressure Difference 2
Pa
J_{Vt}
J_Vt
Sample Flow
m^3/s
S_1
S_1
Section in point 1
m^2
S_2
S_2
Section in point 2
m^2
S
S
Section or Area
m^2
S_t
S_t
Section soil
m^2
J_{Vt}
J_Vt
Total flow
m^3/s

Calculations


First, select the equation: to , then, select the variable: to
f = S_p / S g = r_0 ^2 * q_a /( r_a ^2* q_0 ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) J_{Vt} = N_p * J_V K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f N_p = f * S /( pi * R ^2) R = sqrt( f /(1- f ))* r_0 R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S ) S_p = N_p * pi * R ^2K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta )\ln \gamma = s_a * g_a + s_i * g_i + s_c * g_c LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
f = S_p / S g = r_0 ^2 * q_a /( r_a ^2* q_0 ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) J_{Vt} = N_p * J_V K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f N_p = f * S /( pi * R ^2) R = sqrt( f /(1- f ))* r_0 R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S ) S_p = N_p * pi * R ^2K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta )\ln \gamma = s_a * g_a + s_i * g_i + s_c * g_c LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w




Equations

#
Equation

f = \displaystyle\frac{ S_p }{ S }

f = S_p / S


\gamma = \displaystyle\frac{ r_0 ^2}{ r_a ^2}\displaystyle\frac{ q_a }{ q_0 }

g = r_0 ^2 * q_a /( r_a ^2* q_0 )


j_s =-\displaystyle\frac{ r_0 ^2 }{8 q_0 }\displaystyle\frac{ f ^3 }{(1- f )^2}\displaystyle\frac{ \rho_w g }{ \eta }\displaystyle\frac{ \Delta h }{ \Delta L }

j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL )


J_{Vt} =-\displaystyle\frac{ r_0 ^2}{8 \eta q_0 }\displaystyle\frac{ f ^3}{(1- f )^2}\displaystyle\frac{ S }{ \Delta L } \Delta p

J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL )


J_{Vt} = N_p J_V

J_{Vt} = N_p * J_V


K_s \equiv \displaystyle\frac{ r_0 ^2 }{8 q_0 }\displaystyle\frac{ f ^3 }{(1- f )^2}\displaystyle\frac{ \rho_w g }{ \eta }

K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta )


l = q_0 \displaystyle\frac{(1- f )}{ f } \Delta L

l = q_0 *(1 - f )* DL / f


N_p =\displaystyle\frac{ f S }{ \pi R ^2}

N_p = f * S /( pi * R ^2)


R = \sqrt{\displaystyle\frac{ f }{1- f }} r_0

R = sqrt( f /(1- f ))* r_0


R_h = \displaystyle\frac{8 \eta q_0 }{ r_0 ^2}\displaystyle\frac{(1- f )^2 }{f ^3}\displaystyle\frac{ \Delta L }{ S }

R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )


S_p = N_p \pi R ^2

S_p = N_p * pi * R ^2


K_s = \displaystyle\frac{ r_a ^2}{8 q_a }\displaystyle\frac{ f ^3}{(1- f )^2}\displaystyle\frac{ \rho_w g }{ \eta } \gamma

K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta )


\ln \gamma = s_a g_a + s_i g_i + s_c g_c

\ln \gamma = s_a * g_a + s_i * g_i + s_c * g_c

ID:(15222, 0)



Porosity based on section

Equation

>Top, >Model


The porosity (f) can be calculated from the pore section (S_p) and the section Flow (S) using the following formula:

f = \displaystyle\frac{ S_p }{ S }

R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

With the height the infinitesimal distance (ds), the volume of the section Flow (S) is

S ds



and the volume of the pores with the pore section (S_p) is

S_p ds



Therefore, the porosity (f) is calculated as

f = \displaystyle\frac{S_p ds}{S ds} = \displaystyle\frac{S_p}{S}



resulting in the following equation:

f = \displaystyle\frac{ S_p }{ S }

ID:(938, 0)



Pore section

Equation

>Top, >Model


Since the cross-sectional area of a pore of tube radius (R) is \pi R^2 and the number of capillaries (N_p) is related to that, we can calculate the pore section (S_p) as follows:

S_p = N_p \pi R ^2

N_p
Number of capillaries
-
6039
\pi
Pi
3.1415927
rad
5057
S_p
Pore section
m^2
6040
R
Porosity Radio
m
6021
R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

ID:(4362, 0)



Number of pores

Equation

>Top, >Model


With the porosity (f) and the section Flow (S), we obtain the pore section (S_p), which when divided by the calculated capillary section of the tube radius (R), yields the number of capillaries (N_p) as follows:

N_p =\displaystyle\frac{ f S }{ \pi R ^2}

N_p
Number of capillaries
-
6039
\pi
Pi
3.1415927
rad
5057
f
Porosity
-
5805
R
Porosity Radio
m
6021
S_t
Section soil
m^2
6041
R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

As the porosity (f), calculated with the pore section (S_p) and the section Flow (S) using

f = \displaystyle\frac{ S_p }{ S }



together with the equation for the calculation of the pore section (S_p) based on the number of capillaries (N_p) and the tube radius (R) through

S_p = N_p \pi R ^2



results in

f = \displaystyle\frac{N_p\pi R^2}{S}



can be solved for the number of capillaries (N_p), yielding

N_p =\displaystyle\frac{ f S }{ \pi R ^2}

ID:(4363, 0)



Pore Radius

Equation

>Top, >Model


If we assume that the number of capillaries is equal to the number of visible grains in a section, we can demonstrate that for a grain radius of the radius of a generic grain (r_0) and a porosity (f), the tube radius (R) will be equal to:

R = \sqrt{\displaystyle\frac{ f }{1- f }} r_0

R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

If we consider the area in the section that does not contain pores, subtracting the pore section (S_p) from the section Flow (S) and dividing it by the area of a generic grain with a radius of radius of a generic grain (r_0), we obtain the number of visible grains in the cross-section:

\displaystyle\frac{S-S_p}{\pi r_0^2}=\displaystyle\frac{(1-f)S}{\pi r_0^2}



where we use the relation for the porosity (f):

f = \displaystyle\frac{ S_p }{ S }



If the number of grains is equal to number of capillaries (N_p) with the expression:

N_p =\displaystyle\frac{ f S }{ \pi R ^2}



where the radius is the tube radius (R). With this, we obtain the relation:

\displaystyle\frac{(1-f)S}{\pi r_0^2}=\displaystyle\frac{fS}{\pi R^2}



resulting in:

R = \sqrt{\displaystyle\frac{ f }{1- f }} r_0

ID:(109, 0)



Capillary length

Equation

>Top, >Model


If we equate the volume of a capillary to the volume of a chain of grains multiplied by the sample length (\Delta L), we obtain a relationship between the capillary length (l) and the porosity (f) given by:

l = q_0 \displaystyle\frac{(1- f )}{ f } \Delta L

R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

The volume of the capillary can be calculated from the tube radius (R) and the capillary length (l), which is equal to the volume of a chain of grains of the radius of a generic grain (r_0) and the tube length (\Delta L) multiplied by the generic own porosity (q_0):

\pi R^2 l = q_0 \pi r_0^2 \Delta L



This, in conjunction with the porosity (f) in the relationship

R = \sqrt{\displaystyle\frac{ f }{1- f }} r_0



results in the following relationship:

l = q_0 \displaystyle\frac{(1- f )}{ f } \Delta L

ID:(2215, 0)



Total pore flow

Equation

>Top, >Model


The total flow (J_{Vt}) is calculated by multiplying ($$) by the value of the volume flow (J_V) in each capillary, as follows:

J_{Vt} = N_p J_V

J_V
Hagen-Poiseuille Law
m^3/s
6023
N_p
Number of capillaries
-
6039
J_{Vt}
Total flow
m^3/s
6042
R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

ID:(4364, 0)



Flow through porous soil (Kozeny-Carman)

Equation

>Top, >Model


If we apply the Hagen-Poiseuille equation to the volume flow (J_V) for the case of capillaries with the tube radius (R) expressed in terms of the porosity (f) and the capillary length (l) as a function of the sample length (\Delta L), we can calculate the total flow (J_{Vt}) using

J_{Vt} = N_p J_V



The result can be expressed in terms of the section Flow (S), the viscosity (\eta), the generic own porosity (q_0), the radius of a generic grain (r_0), and the pressure difference (\Delta p):

J_{Vt} =-\displaystyle\frac{ r_0 ^2}{8 \eta q_0 }\displaystyle\frac{ f ^3}{(1- f )^2}\displaystyle\frac{ S }{ \Delta L } \Delta p

L
Capillary length
m
6022
J_{Vt}
Hagen-Poiseuille law for soil
m^3/s
6043
f
Porosity
-
5805
R
Porosity Radio
m
6021
\Delta p_2
Pressure Difference 2
Pa
5820
S_t
Section soil
m^2
6041
\eta_w
Water Viscosity
Pa s
6020
R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

To calculate the total flow (J_{Vt}) using the number of capillaries (N_p) and the volume flow (J_V) for each capillary through

J_{Vt} = N_p J_V



we obtain the number of capillaries (N_p) with the porosity (f), the section Flow (S), and the tube radius (R) through

N_p =\displaystyle\frac{ f S }{ \pi R ^2}



and the Hagen-Poiseuille law using the viscosity (\eta), the pressure difference (\Delta p), and the capillary length (l) is calculated with

J_v = - \displaystyle\frac{\pi R^4}{8\eta}\displaystyle\frac{\Delta p}{l}



Using the relationship for the tube radius (R) in terms of the radius of a generic grain (r_0)

R = \sqrt{\displaystyle\frac{ f }{1- f }} r_0



and for the capillary length (l), the generic own porosity (q_0), and the sample length (\Delta L)

l = q_0 \displaystyle\frac{(1- f )}{ f } \Delta L



we obtain

J_{Vt} =-\displaystyle\frac{ r_0 ^2}{8 \eta q_0 }\displaystyle\frac{ f ^3}{(1- f )^2}\displaystyle\frac{ S }{ \Delta L } \Delta p

This equation corresponds to the Kozeny-Carman equation, which was developed by Kozeny and Carman to model the flow of a liquid through a porous medium and was published in:

• In regards to the capillary conduction of water in soil., ("Ueber kapillare Leitung des Wassers im Boden."), J. Kozeny, Sitzungsber Akad. Wiss., Wien, 136(2a): 271-306 (1927)

• Fluid flow through granular beds., P.C. Carman, Transactions, Institution of Chemical Engineers, London, 15: 150-166 (1937)

• Flow of gases through porous media., P.C. Carman, Butterworths, London (1956)

ID:(4365, 0)



Hydraulic resistance of a component

Equation

>Top, >Model




R_h = \displaystyle\frac{8 \eta q_0 }{ r_0 ^2}\displaystyle\frac{(1- f )^2 }{f ^3}\displaystyle\frac{ \Delta L }{ S }

S_1
Section in point 1
m^2
5257
S_2
Section in point 2
m^2
6017
S
Section or Area
m^2
5405
R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

With Darcy's law, where the pressure difference (\Delta p) equals the hydraulic resistance (R_h) and the total flow (J_{Vt}):

\Delta p = R_h J_V



Thus, with the equation for the soil with the section Flow (S), the radius of a generic grain (r_0), the viscosity (\eta), the generic own porosity (q_0), the porosity (f), the pressure difference (\Delta p), and the sample length (\Delta L):

J_{Vt} =-\displaystyle\frac{ r_0 ^2}{8 \eta q_0 }\displaystyle\frac{ f ^3}{(1- f )^2}\displaystyle\frac{ S }{ \Delta L } \Delta p



Therefore, the hydraulic resistance (R_h) is:

R_h = \displaystyle\frac{8 \eta q_0 }{ r_0 ^2}\displaystyle\frac{(1- f )^2 }{f ^3}\displaystyle\frac{ \Delta L }{ S }

ID:(10594, 0)



Flow density between columns

Equation

>Top, >Model


In the case of a tube through which a liquid with the water density (\rho_w) flows due to the pressure difference (\Delta p) generated by a ($$) under the influence of gravity represented by the gravitational Acceleration (g) and calculated with the equation:

\Delta p = \rho_w g \Delta h



this can be used in the Hagen-Poiseuille equation, along with the definition of the flux density (j_s) in terms of the total flow (J_{Vt}), which in turn depends on the radius of a generic grain (r_0), the generic own porosity (q_0), the porosity (f), the viscosity (\eta), and the sample length (\Delta L):

j_s =-\displaystyle\frac{ r_0 ^2 }{8 q_0 }\displaystyle\frac{ f ^3 }{(1- f )^2}\displaystyle\frac{ \rho_w g }{ \eta }\displaystyle\frac{ \Delta h }{ \Delta L }

L
Capillary length
m
6022
\Delta h
Height of liquid column
m
5819
\rho_w
Liquid density
kg/m^3
5407
f
Porosity
-
5805
R
Porosity Radio
m
6021
J_{Vt}
Sample Flow
m^3/s
6044
S_t
Section soil
m^2
6041
\eta_w
Water Viscosity
Pa s
6020
R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

In the case of capillaries through which a liquid with the liquid density (\rho_w) flows due to the pressure difference (\Delta p) generated by ($$) under the influence of gravity represented by the gravitational Acceleration (g) and calculated with the equation:

\Delta p = \rho_w g \Delta h



this can be applied in the Hagen-Poiseuille equation, in terms of the total flow (J_{Vt}), which in turn depends on the radius of a generic grain (r_0), the generic own porosity (q_0), the porosity (f), the viscosity (\eta), the section or Area (S), and the sample length (\Delta L) as described in the equation:

J_{Vt} =-\displaystyle\frac{ r_0 ^2}{8 \eta q_0 }\displaystyle\frac{ f ^3}{(1- f )^2}\displaystyle\frac{ S }{ \Delta L } \Delta p



Together with the definition of the flux density (j_s):

j_s = \displaystyle\frac{J_{Vt}}{S}



We have:

j_s=\displaystyle\frac{J_{Vt}}{S}=\displaystyle\frac{ r_0 ^2 }{8 q_g }\displaystyle\frac{ f ^3 }{(1- f )^2}\displaystyle\frac{ \rho_w g }{ \eta }\displaystyle\frac{ \Delta h }{ L }



resulting in:

j_s =-\displaystyle\frac{ r_0 ^2 }{8 q_0 }\displaystyle\frac{ f ^3 }{(1- f )^2}\displaystyle\frac{ \rho_w g }{ \eta }\displaystyle\frac{ \Delta h }{ \Delta L }

ID:(4366, 0)



Capillary scaling factor

Equation

>Top, >Model


To establish a relationship between hydraulic conductivity and mass factors, we introduce the capillary scaling factor (\gamma) with the radius of a generic grain (r_0), the sand grain radius (r_a), the generic own porosity (q_0), and the sand's own porosity (q_a) as

\gamma = \displaystyle\frac{ r_0 ^2}{ r_a ^2}\displaystyle\frac{ q_a }{ q_0 }

R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

.

ID:(15101, 0)



Hydraulic conductivity and scale factor

Equation

>Top, >Model


From the definition of the hydraulic conductivity (K_s) and the capillary scaling factor (\gamma), we can express the hydraulic conductivity (K_s) in terms of the sand grain radius (r_a), the sand's own porosity (q_a), the porosity (f), the liquid density (\rho_w), the gravitational Acceleration (g), and the viscosity (\eta) as:

K_s = \displaystyle\frac{ r_a ^2}{8 q_a }\displaystyle\frac{ f ^3}{(1- f )^2}\displaystyle\frac{ \rho_w g }{ \eta } \gamma

R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w

.

ID:(977, 0)



Regression for hydraulic conductivity

Equation

>Top, >Model


The calculation of the capillary scaling factor (\gamma) is derived from the porosity (f), the liquid density (\rho_w), the gravitational Acceleration (g), and the viscosity (\eta), excluding the sand grain radius (r_a) and the sand's own porosity (q_a), through the following equation:

\gamma=\displaystyle\frac{8K_sq_a}{r_a^2}\displaystyle\frac{(1-f)^2}{f^3}\displaystyle\frac{\eta}{\rho_wg}



If we want to relate the capillary scaling factor (\gamma) to the mass fraction of sand in the sample (g_a), the mass fraction of silt in the sample (g_i), and the mass fraction of clay in the sample (g_c), we observe that while the former varies by 6 orders of magnitude, the latter vary by only 2 orders of magnitude. Therefore, it makes sense to establish a relationship with the natural logarithm of \gamma. Thus, we perform a regression using the equation:

\ln \gamma = s_a g_a + s_i g_i + s_c g_c

R = sqrt( f /(1- f ))* r_0 f = S_p / S K_s = r_a ^2* f ^3* rho_w * g * gamma /(8* q_a *(1- f )^2* eta ) l = q_0 *(1 - f )* DL / f S_p = N_p * pi * R ^2 N_p = f * S /( pi * R ^2) J_{Vt} = N_p * J_V J_Vt = - S * r_0 ^2* f ^3 * Dp /(8* eta * q_0 *(1- f )^2* DL ) j_s = - r_0 ^2* rho_w * g * f ^3 * Dh /(8* q_0 * eta * DL ) K_s = r_0 ^2 * f ^3 * rho_w * g /(8* q_0 *(1- f )^2* eta ) R_h = 8* eta * q_0 * (1- f )^2* DL /( r_0 ^2* f ^3 * S )ln gamma = s_a * g_a + s_i * g_i + s_c * g_c g = r_0 ^2 * q_a /( r_a ^2* q_0 )LJ_VJ_VtDhrho_wN_ppiS_pfRDp_2J_VtS_1S_2SS_tJ_Vteta_w



with the capillary section factor in sand (s_a), the capillary section factor in silt (s_i), and the clay capillary section factor (s_c).

The mean data for each range are as follows:

Type g_a [-] g_i [-] g_c [-] f [-] K_s [m/s] \gamma [-] \ln \gamma [-]
Clay 0.20 0.20 0.60 0.45 1.00E-09 6.45E-10 -21.16
Loam 0.40 0.40 0.20 0.45 1.00E-07 6.45E-08 -16.56
Sand 0.93 0.03 0.04 0.30 1.00E-04 3.52E-04 -7.95
Silt 0.10 0.85 0.05 0.40 1.00E-07 1.09E-07 -16.03
Silty Clay 0.10 0.50 0.40 0.45 1.00E-09 6.45E-10 -21.16
Sandy Clay 0.50 0.05 0.45 0.40 1.00E-07 1.09E-07 -16.03
Clay Loam 0.30 0.35 0.35 0.45 1.00E-07 6.45E-08 -16.56
Silty Clay Loam 0.10 0.55 0.35 0.45 1.00E-08 6.45E-09 -18.86
Sandy Clay Loam 0.60 0.13 0.27 0.40 1.00E-06 1.09E-06 -13.73
Loamy Sand 0.20 0.65 0.15 0.40 1.00E-07 1.09E-07 -16.03
Sandy Loam 0.65 0.25 0.10 0.35 1.00E-05 1.92E-05 -10.86
Silty Sand 0.82 0.10 0.08 0.30 1.00E-04 3.52E-04 -7.95



The regression results in a linear relationship with an R-squared value of 0.9975 and the following coefficients, along with the values to assess the quality of the coefficients:

Type s [-] p-test
Sand (a) -6.208 4.31E-6
Silt (i) -16.845 5.82E-9
Clay (c) -27.652 2.41E-9

Given the p-test values, we can assume that all coefficients are highly relevant.

ID:(15100, 0)