Capacity
Equation
Si se define una superficie que pasa entre las placas y rodea la carga
$E_dS=\displaystyle\frac{Q}{\epsilon\epsilon_0}$
con
Como por otro lado el campo es igual a la diferencia de potencial
$\Delta\varphi = \displaystyle\frac{\sigma}{\epsilon\epsilon_0}d=E_dd=\displaystyle\frac{Q}{\epsilon\epsilon_0}\displaystyle\frac{d}{S}$
se obtiene con la definición
$\Delta\varphi=\displaystyle\frac{Q}{C}$
que la capacidad de dos placas se puede calcular con
$ C = \epsilon_0 \epsilon \displaystyle\frac{ S }{ d }$ |
ID:(3865, 0)
Equation of a capacitor
Equation
The potential difference ($\Delta\varphi$) generates the charge in the capacitor, inducing the charge ($Q$) on each side (with opposite signs), depending on the capacitor capacity ($C$), according to the following relationship:
$ \Delta\varphi =\displaystyle\frac{ Q }{ C }$ |
ID:(3864, 0)
Sum of capacities in parallel
Equation
Al conectar capacidades en paralelo caída de potencial
$Q=\displaystyle\sum_i Q_i$
Si ahora se aplica la relación de las capacidades para cada una de estas se tendrá para potenciales iguales que
$\Delta\varphi=\displaystyle\frac{Q_i}{C_i}$
Con ello la carga total es igual a
$Q=\displaystyle\sum_i C_i\Delta\varphi$
por lo que la regla de suma de capacidades en paralelo será con
$ C_p =\displaystyle\sum_ i C_i $ |
ID:(3218, 0)
Sum of parallel capacities (2)
Equation
The sum capacity in parallel ($C_p$) is obtained by adding the capacity 1 ($C_1$) and the capacity 2 ($C_2$), which can be expressed as:
$ C_p = C_1 + C_2 $ |
ID:(3866, 0)
Sum of parallel capacities (3)
Equation
The sum capacity in parallel ($C_p$) is obtained by adding the capacity 1 ($C_1$), the capacity 2 ($C_2$) and the capacity 3 ($C_3$), which can be expressed as:
$ C_p = C_1 + C_2 + C_3 $ |
ID:(3867, 0)
Sum of parallel capacities (4)
Equation
The sum of four parallel capacity gives
$ C_p = C_1 + C_2 + C_3 + C_4 $ |
ID:(3868, 0)
Sum of series capacities
Equation
Al conectar capacidades en serie en cada una de ellas ocurre una caída de potencial
$\Delta\varphi=\sum_i\Delta\varphi_i$
Los potenciales llevan a que desplazan cargas, sin embargo como inicialmente en las conexiones entre los condensadores no tienen cargas, la polarización debe ser tal que el número de cargas positivas debe ser igual a las negativas. Por ello el
$\Delta\varphi_i=\displaystyle\frac{Q}{C_i}$
Con ello el potencial total es igual a
$\Delta\varphi=\sum_i\displaystyle\frac{1}{C_i}Q$
por lo que la regla de suma de capacidades en serie será con
$\displaystyle\frac{1}{ C_s }=\sum_i\displaystyle\frac{1}{ C_i }$ |
ID:(3217, 0)
Sum of series capacities (2)
Equation
The inverse of the sum capacity in serie ($C_s$) is calculated as the sum of the inverses of the capacity 1 ($C_1$) and the capacity 2 ($C_2$), according to the following relationship:
$\displaystyle\frac{1}{ C_s }=\displaystyle\frac{1}{ C_1 }+\displaystyle\frac{1}{ C_2 }$ |
ID:(3869, 0)
Sum of series capacities (3)
Equation
The inverse of the sum capacity in serie ($C_s$) is calculated as the sum of the inverses of the capacity 1 ($C_1$), the capacity 2 ($C_2$) and the capacity 3 ($C_3$), according to the following relationship:
$\displaystyle\frac{1}{ C_s }=\displaystyle\frac{1}{ C_1 }+\displaystyle\frac{1}{ C_2 }+\displaystyle\frac{1}{ C_3 }$ |
ID:(3870, 0)
Sum of series capacities (4)
Equation
The sum of four serial capacities gives
$\displaystyle\frac{1}{ C_s }=\displaystyle\frac{1}{ C_1 }+\displaystyle\frac{1}{ C_2 }+\displaystyle\frac{1}{ C_3 }+\displaystyle\frac{1}{ C_4 }$ |
ID:(3871, 0)