
Concentración de partículas
Equation 
La concentración de partículas en una posición
$c(\vec{x},t)=\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t)$ |
ID:(9076, 0)

Valor esperado de una magnitud
Equation 
Si uno desea estimar un parámetro macroscopico debe promediar su valor microscópico ponderado con la función de distribución
$c(\vec{x},t)=\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t)$ |
por lo que se expresa como
$ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$ |
ID:(9075, 0)

Density
Equation 
If the parameters are calculated by averaging over the speed using
$ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$ |
the mass density estimation is obtained by:
$\rho(\vec{x},t) = m\displaystyle\int f(\vec{x},\vec{v},t)d\vec{v}$ |
ID:(8458, 0)

Speed of the Flow
Equation 
If the parameters are calculated by averaging over the speed using
$ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$ |
the velocity of the flow is calculated by integrating the velocity distribution function on all velocities by weighing the velocities:
$\vec{u}(\vec{x},t) = \displaystyle\frac{m}{\rho}\int \vec{v}f(\vec{x},\vec{v},t)d\vec{v}$ |
ID:(8459, 0)

Temperature
Equation 
If the parameters are calculated by averaging over the speed using
$ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$ |
and the equipartition theorem is considered, the temperature can be estimated by integrating the kinetic energy weighted by the velocity distribution divided by the gas constant:
$T(\vec{x},t) = \displaystyle\frac{m}{3R\rho}\displaystyle\int (\vec{v}\cdot\vec{v})f(\vec{x},\vec{v},t)d\vec{v}$ |
ID:(8460, 0)

Tension tensor
Equation 
If the parameters are calculated by averaging over the speed using
$ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$ |
the flow tensor is calculated by integrating the velocity distribution function on all velocities by weighing the velocity differences:
$\sigma_{ij} = m\displaystyle\int (v_i-u_i)(v_j-u_j)f(\vec{x},\vec{v},t)d\vec{v}$ |
ID:(8461, 0)