Poisson distributions

Storyboard

In the case where the probability is very small, the binomial distribution is reduced to a Poisson distribution.

>Model

ID:(1555, 0)



Poisson distributions

Description

In the case where the probability is very small, the binomial distribution is reduced to a Poisson distribution.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$e^{-\lambda}$
elam
Exponential $e^{-\lambda}$
-
$N^n$
N^n
Exponential $N^n$
-
$n!$
n!
Factorial $n!$
-
$n$
n
Number
-
$N$
N
Número total de pasos
-
$n$
n
Número totales de pasos a la izquierda
-
$\lambda^n$
lambda_n
Power of lambda $\lambda^n$
-
$P_N(m)$
P_Nm
Probabilidad de $n_1$ de $N$ pasos hacia la izquierda
-
$p$
p
Probabilidad de pasos hacia la izquierda
-
$\lambda$
lam
Standard Deviation Poisson
-

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

If we study the binomial distribution for large numbers N and very small probability p \ ll 1 it can be approximated using a Poisson distribution. The comparison can be done with the following simulator:

(ID 7794)


ID:(1555, 0)