Gaussian distribution
Storyboard
In the limit of similar probabilities the binomial distribution is reduced in the continuous limit to the Gaussean distribution.
ID:(1556, 0)
Distribución binomial
Equation
Con la probabilidad de que se de un numero definido de pasos a la derecha e izquierda esta dada por
$W_N(n_1,n_2)=\displaystyle\frac{N!}{n_1!n_2!}p^{n_1}q^{n_2}$ |
con el número total de pasos es
$N=n_1+n_2$ |
y solo existe la probabilidad de ir a la derecha o a la izquierda, con se tiene para las probabilidades que
$p+q=1$ |
por lo que con se tiene la distribución binomial
$ W_N(n) =\displaystyle\frac{ N !}{ n !( N - n )!} p ^ n (1- p )^{ N - n }$ |
ID:(8961, 0)
Approach for $N!$
Equation
With the Stirling approximation
equation=8966
and the change of variables
equation=8996
you get that
equation
ID:(8998, 0)
Approximation for $n!$
Equation
With the Stirling approximation
equation=8966
and the change of variables
equation=11431
you get that
equation
ID:(9003, 0)
Approximation for $(N-n)!$
Equation
With the Stirling approximation
equation=8966
and the change of variables
equation=8997
the expression is
equation
ID:(8999, 0)
Factor $N!/N!(N-n)!$ For $N\gg 1$, $n\gg 1$ and $N>n$
Equation
In the case of medium probabilities (
$N!\sim\sqrt{2\pi N}\left(\displaystyle\frac{N}{e}\right)^N$ |
$n!\sim\sqrt{2\pi n}\left(\displaystyle\frac{n}{e}\right)^n$ |
and
$(N-n)!\sim\sqrt{2\pi(N-n)}\left(\displaystyle\frac{N-n}{e}\right)^{N-n}$ |
is obtained
$\displaystyle\frac{N!}{n!(N-n)!}\sim\displaystyle\frac{1}{\sqrt{2\pi N}}\left(\displaystyle\frac{n}{N}\right)^{-n-1/2}\left(\displaystyle\frac{N-n}{N}\right)^{-N+n-1/2}$ |
ID:(507, 0)
Limit of large Numbers and middle Probabilities
Equation
The expression
$ W_N(n) =\displaystyle\frac{ N !}{ n !( N - n )!} p ^ n (1- p )^{ N - n }$ |
is reduced by
$\displaystyle\frac{N!}{n!(N-n)!}\sim\displaystyle\frac{1}{\sqrt{2\pi N}}\left(\displaystyle\frac{n}{N}\right)^{-n-1/2}\left(\displaystyle\frac{N-n}{N}\right)^{-N+n-1/2}$ |
to representation
$W_N(n)\sim\displaystyle\frac{1}{\sqrt{2\pi N}}\left(\displaystyle\frac{n}{N}\right)^{-n-1/2}\left(\displaystyle\frac{N-n}{N}\right)^{-N+n-1/2}p^n(1-p)^{N-n}$ |
ID:(506, 0)
Average position
Equation
If total
$\mu=aNp$ |
ID:(9008, 0)
Change variables by offset $x=(n-Np)a$
Equation
To obtain the Gaussian distribution it is necessary to develop the distribution around its deviation from its mean position that can be given by
$x=(n-Np)a$ |
ID:(8973, 0)
Factor $n/N$ depending on the path $x$
Equation
As the way is
$x=(n-Np)a$ |
factor
$\displaystyle\frac{n}{N}=p\left(1+\displaystyle\frac{x}{aNp}\right)$ |
ID:(9004, 0)
Factor $N-n/N$ depending on the path $x$
Equation
As the way is
$x=(n-Np)a$ |
factor
$\displaystyle\frac{N-n}{N}=(1-p)\left(1-\displaystyle\frac{x}{aN(1-p)}\right)$ |
ID:(9005, 0)
Binomial distribution as a function of deviation
Equation
If large numbers and probabilities around 1/2 are entered in the binomial distribution for the case
$W_N(n)\sim\displaystyle\frac{1}{\sqrt{2\pi N}}\left(\displaystyle\frac{n}{N}\right)^{-n-1/2}\left(\displaystyle\frac{N-n}{N}\right)^{-N+n-1/2}p^n(1-p)^{N-n}$ |
the expressions
$\displaystyle\frac{n}{N}=p\left(1+\displaystyle\frac{x}{aNp}\right)$ |
and
$\displaystyle\frac{N-n}{N}=(1-p)\left(1-\displaystyle\frac{x}{aN(1-p)}\right)$ |
a distribution of the form is obtained
$W_N(n)\sim\displaystyle\frac{1}{\sqrt{2\pi N}p(1-p)}\left(1+\displaystyle\frac{x}{aNp}\right)^{-n-1/2}\left(1-\displaystyle\frac{x}{aN(1-p)}\right)^{-N+n-1/2}$ |
ID:(8974, 0)
Variable change $u=x/aNp$
Equation
To develop the
$u=\displaystyle\frac{x}{aNp}$ |
ID:(9021, 0)
Factor $1+x/aNp$ for $N\gg 1$ and $p\sim 1/2$
Equation
With the approximation
$1+u\sim e^{u-\frac{1}{2}u^2}$ |
it has to
$\left(1+\displaystyle\frac{x}{aNp}\right)\sim e^{x/aNp-x^2/2a^2N^2p^2}$ |
ID:(9006, 0)
Variable change $u=x/aN(1-p)$
Equation
To develop the factor
$u=\displaystyle\frac{x}{aN(1-p)}$ |
ID:(9022, 0)
Factor $1-x /aN(1-p)$ for $N\gg 1$ and $p\sim 1/2$
Equation
With the approximation
$1+u\sim e^{u-\frac{1}{2}u^2}$ |
it has to
$\left(1-\displaystyle\frac{x}{aN(1-p)}\right)\sim e^{-x/aN(1-p)-x^2/2a^2N^2(1-p)^2}$ |
ID:(9007, 0)
Probability for large $N$ and middle $p$
Equation
It can be shown that for a large number
$P(x)=\displaystyle\frac{1}{\sqrt{2\pi N^2p(1-p)}}e^{-(x-aNp)^2/2N^2p(1-p)}$ |
In this case, the probability
ID:(3367, 0)
Generalization Limit Big Numbers
Equation
$\begin{matrix}
P(x) & = & \displaystyle\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}\\
\sigma^2 & = & Np(1-p)\\
\end{matrix}
$
ID:(3368, 0)
Gaussian distribution standard deviation
Equation
The standard deviation of the binomial distribution at the limit
$ \sigma^2 = N ^2 p (1- p )$ |
ID:(8963, 0)
Example comparison with Gaussian distribution
Image
If we study the binomial distribution for large numbers
$P(x)=\displaystyle\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}$ |
which is represented below:
ID:(7793, 0)
0
Video
Video: Gaussian distribution