Flat Mirror

Storyboard

In the case of a flat mirror, the light is reflected at an angle identical to the one it affected.

In general, the light does not have the information that has been reflected with what the eye assumes that the light originates 'behind' the mirror.

>Model

ID:(1263, 0)



La ley de reflexión

Image

>Top


Aplicando el principio de Huygens se muestra que un haz que incide sobre una superficie se refleja bajo un angulo igual al de incidencia:

ID:(12758, 0)



Direction of the reflected Light

Equation

>Top, >Model


Para la luz reflejada el angulo del haz respecto de la normal \theta_i es igual al angulo de reflexión \theta_r:

$ \theta_i = \theta_r $

$\theta_i$
Angle of Incidence
$rad$
$\theta_r$
Angle of Reflection
$rad$

ID:(3262, 0)



A Mirror

Image

>Top


A mirror looks like a window to another room. The effect is created by the reflected light that the eye assumes was not reflected but comes from an object behind the mirror.

ID:(9777, 0)



Complementary angle of incidence angle

Equation

>Top, >Model


Para el calculo de los ángulos en el caso de que los haces se reflejan en un espejo es útil poder calcular el angulo complementario al de incidencia. Por ello se tiene que

$ \theta_{ic} =\displaystyle\frac{ \pi }{2} - \theta_i $

$\theta_i$
Angle of Incidence
$rad$
$\pi$
Pi
3.1415927
$rad$

Como la suma de los ángulos internos en un triangulo es

$ \pi = \alpha + \beta + \gamma $



se tiene que en un rectángulo, en el que uno de los ángulos es \pi/2 se tiene que

$ \theta_{ic} =\displaystyle\frac{ \pi }{2} - \theta_i $

ID:(10928, 0)



Angulo complementario del angulo de reflexión

Equation

>Top, >Model


Para el calculo de los ángulos en el caso de que los haces se reflejan en un espejo es útil poder calcular el angulo complementario al de reflexión. Por ello se tiene que

$ \theta_{rc} =\displaystyle\frac{ \pi }{2} - \theta_r $

$\theta_r$
Angle of Reflection
$rad$
$\pi$
Pi
3.1415927
$rad$

Como la suma de los ángulos internos en un triangulo es

$ \pi = \alpha + \beta + \gamma $



se tiene que en un rectángulo, en el que uno de los ángulos es \pi/2 se tiene que

$ \theta_{rc} =\displaystyle\frac{ \pi }{2} - \theta_r $

ID:(10925, 0)



Sum of angle of a triangle

Equation

>Top, >Model



$ \pi = \alpha + \beta + \gamma $

$\alpha$
Angulo complementario del angulo de incidencia
$rad$
$\beta$
Angulo complementario del angulo de reflección
$rad$
$\pi$
Pi
3.1415927
$rad$

ID:(10926, 0)



Relación entre ángulos de incidencia y reflexión

Image

>Top


En caso de dos espejos con una esquina



se pueden calcular los ángulos con la relación de reflexión

$ \theta_i = \theta_r $



el calculo del complemento del angulo incidente

$ \theta_{rc} =\displaystyle\frac{ \pi }{2} - \theta_r $



el calculo del complemento del angulo de reflección

$ \theta_{ic} =\displaystyle\frac{ \pi }{2} - \theta_i $



y la relación entre los ángulos de un triangulo

$ \pi = \alpha + \beta + \gamma $

ID:(12666, 0)



Angulo de incidencia

Equation

>Top, >Model


El angulo de incidencia \theta_i, y con ello el de reflexión \theta_r, se asocia al camino recorrido paralelo al espejo h/2 y la distancia a este d mediante:

$ \tan \theta_i =\displaystyle\frac{ h }{2 d }$

$\theta_i$
Angle of Incidence
$rad$
$d$
Distancia al espejo
$m$
$h$
Distancia que haz avanza paralelo al espejo
$m$

ID:(9779, 0)



Relación entre ángulos de incidencia y reflexión

Image

>Top


Del análisis mediante el principio de Huygens se concluye que los ángulos de incidencia y reflexión son iguales:

ID:(12665, 0)



0
Video

Video: Espejo Plano