Relaxation Approach

Equation

>Top, >Model


One way to solve Boltzmann's general equation is to linearize the equation by assuming that the collision term can be written as the difference between the distribution function and the equilibrium solution represented by the distribution function of Maxwell Boltzmann

$\displaystyle\frac{df}{dt}=-\displaystyle\frac{1}{\tau}(f-f^{(0)})$

ID:(9083, 0)



Distribution in Balance (Gas of Particles)

Equation

>Top, >Model


The equilibrium distribution can be approximated by a distribution of Maxwell Boltzmann

$f_i^{eq}=\displaystyle\frac{m}{2\pi kT}e^{-m|c\vec{e}_i-\vec{u}|^2/2kT}$

Where m is the mass of the particle, T the system temperature and k the Boltzmann constant.

ID:(8490, 0)



Bhatnagar-Gross-Krook Approach

Equation

>Top, >Model


En la aproximación Bhatnagar-Gross-Krook la distribución en equilibrio se asume como la de un gas de partículas sin interacción

$f^{(0)}(\vec{x},\vec{v},t)=c(\vec{x},t)\left(\displaystyle\frac{m\beta}{2\pi}\right)^{3/2}e^{-\beta m(\vec{v}-\vec{u}(\vec{x},t))^2/2}$



con \vec{u} la velocidad del flujo, k la constante de Boltzmann, T la temperatura y m la masa de la particula. Si se desarrolla esta expresión en el limite de velocidades \vec{u} comparada con la velocidad de las moleculas c\hat{e}_i se tiene que

$f_i^{eq}=\rho\omega_i\left(1+\displaystyle\frac{3\vec{u}\cdot\vec{e}_i}{c}+\displaystyle\frac{9(\vec{u}\cdot\vec{e}_i)^2}{2c^2}-\displaystyle\frac{3u^2}{2c^2}\right)$

con \omega_i los pesos dados por

Modelo$\omega_i$Index
1DQ3 ? i=0
- ? i=1, 2
2DQ9 4/9 i=0
- 1/9 i=1,...,4
- 1/36 i=5,...,8
3DQ15 1/3 i=0
- 1/18 i=1,...,6
- 1/36 i=7,...,14
3DQ19 ? i=0
- ? i=1,...,6
- ? i=7,...,18

que se determinan asegurando que la distribución equilibrio cumpla las leyes de conservación.

ID:(9084, 0)



Example of Density

Description

>Top


In D2Q9 the density is calculated simply by adding the different factors

$\rho(\vec{x},t) = m\displaystyle\int f(\vec{x},\vec{v},t)d\vec{v}$

\\n\\nso you have\\n\\n

$rho[x,y] = O[x,y]+N[x,y]+E[x,y]+S[x,y]+W[x,y]+NE[x,y]+SE[x,y]+NW[x,y]+SW[x,y]$

ID:(9152, 0)



Example of Speed in x

Description

>Top


In D2Q9 the flow rate is calculated simply by adding the different factors

$\vec{u}(\vec{x},t) = \displaystyle\frac{m}{\rho}\int \vec{v}f(\vec{x},\vec{v},t)d\vec{v}$

so you have

```

u_x[x,y] = E[x,y] + NE[x,y] + SE[x,y] - W[x,y] - NW[x,y] - SW[x,y]

```

ID:(9153, 0)



Example of Speed in y

Description

>Top


In D2Q9 the flow rate is calculated simply by adding the different factors

$\vec{u}(\vec{x},t) = \displaystyle\frac{m}{\rho}\int \vec{v}f(\vec{x},\vec{v},t)d\vec{v}$

so you have

```

u_y[x,y] = N[x,y] + NE[x,y] + NW[x,y] - S[x,y] - SE[x,y] - SW[x,y]

```

ID:(9154, 0)



Ejemplo de elemento de Colisión

Description

>Top


In case D2Q9 the term collision is calculated by summing the different factors

$f_i^{eq}=\rho\omega_i\left(1+\displaystyle\frac{3\vec{u}\cdot\vec{e}_i}{c}+\displaystyle\frac{9(\vec{u}\cdot\vec{e}_i)^2}{2c^2}-\displaystyle\frac{3u^2}{2c^2}\right)$

so you have for each cell

```

O = O+w(4rho/9)(1-3u2/2) - O)

E = E+w(rho/9)(1 + u_x/3+5u_x^2-3u2/2)-E)

W = W+w(rho/9)(1 - u_x/3+5u_x^2-3u2/2)-W)

N = N+w(rho/9)(1 + u_y/3+5u_y^2-3u2/2)-N)

S = S+w(rho/9)(1 - u_y/3+5u_y^2-3u2/2)-S)

NE = NE+w(rho/36)(1+u_x/3+u_y/3+5(u2+2u_xu_y)/2-3u2/2) - NE)

SE = SE+w(rho/36)(1+u_x/3-u_y/3+5(u2-2u_xu_y)/2-3u2/2) - SE)

NW = NW+w(rho/36)(1-u_x/3+u_y/3+5(u2-2u_xu_y)/2-3u2/2) - NW)

SW = SW+w(rho/36)(1-u_x/3-u_y/3+5(u2+2u_xu_y)/2-3u2/2) - SW)

```

with

```

u2 = u_x^2+u_y^2

```

ID:(9155, 0)



Example Hydrodynamic Simulator

Description

>Top


In the case of particles of a liquid, the method LBM allows to develop simulators as shown in the example:

(html file)

ID:(9156, 0)