Benützer:


Colisiones

Storyboard

>Modell

ID:(1112, 0)



Colisiones

Beschreibung

Variablen

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten
$f_{in}$
f_in
Contribución a la función distribución que ingresan (gana)
-
$f_{out}$
f_out
Contribución a la función distribución que salen (pierde)
-
$f$
f
Función distribución de la teoría de transporte
-
$\sigma$
sigma
Sección eficaz de la colisión $(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}'_1,\vec{v}'_2)$
m^2
$t$
t
Tiempo
s
$\tau$
tau
Tiempo de relajamiento
s
$v$
v
Velocidad de la partícula que afecta la distribución
m/s
$v_1$
v_1
Velocidad partícula 1 que colisiona
m/s
$v_21$
v_21
Velocidad partícula 1 que resulta de la colisión
m/s
$v_2$
v_2
Velocidad partícula 2 que colisiona
m/s
$v_22$
v_22
Velocidad partícula 2 que resulta de la colisión
m/s

Berechnungen


Zuerst die Gleichung auswählen:   zu ,  dann die Variable auswählen:   zu 

Symbol
Gleichung
Gelöst
Übersetzt

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

 Variable   Gegeben   Berechnen   Ziel :   Gleichung   Zu verwenden



Gleichungen


Beispiele

Wenn die Teilchen kollidieren, variieren die Verteilungsfunktion nach f(\vec{x},\vec{v},t) so dass\\n\\n

$\displaystyle\frac{df}{dt}\neq 0$



Kollisionen verursachen, dass Teilchen benachbarter Zellen einer Kollision unterliegen, die sie in die betroffene Zelle bringt und Partikel innerhalb der zu vertauschten Zelle. Die erste f hrt zu einer Zunahme von f_{in} Partikeln und der zweite zu einem f_{out} Zeitverlust \tau. So kann die Boltzmann-Transportgleichung mit Kollisionen als geschrieben werden

$\displaystyle\frac{df}{dt}=\displaystyle\frac{1}{\tau}(f_{in}-f_{out})$

(ID 9077)

Im Falle von Kollisionen gehen die Geschwindigkeiten der Teilchen von \vec{v}_1 und \vec{v}_2 zu den Geschwindigkeiten \vec{ v}_1 ' und \vec{v}_2' ber. Die Wahrscheinlichkeit, dass nach der Kollision die Geschwindigkeiten \vec{v}_1' und \vec{v}_2' sind ist durch die Querschnitt \sigma gegeben, die mit\\n\\n

$\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_1',\vec{v}_2')d\vec{v}_1'd\vec{v}_2')$

\\n\\nberechnet werden kann. Da die Wahrscheinlichkeit der Partikel, die Kollision eintritt sind \vec{v}_1 und \vec{v}_2 Verteilungsfunktion berechnet werden\\n\\n

$f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)$



Da die Verschiebung in Abh ngigkeit von der Relativgeschwindigkeit |\vec{v}_2-\vec{v}_1| geschied ist die schlussendliche ver nderung der Teilchen gleich

$f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22$

(ID 9078)

Im Fall von Beitr gen zur Zelle m ssen die Beitr ge

$f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22$



ber cksichtigung werden. Integrierd man ber die Startgeschwindigkeiten und die bei der Kollision entstehende, da diese zur lokalen Verteilungsfunktion beitragen

$\displaystyle\frac{1}{\tau}f_{in}(\vec{v})=\displaystyle\int d\vec{v}_1d\vec{v}_2d\vec{v}_12f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v})$

(ID 9079)

Die die Zelle verl ssen tragen bei mit

$f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22$



Integration ber eine der Ausgangsgeschwindigkeiten und beide resultierende Kollision da der andere der Beitrag zur lokalen Verteilungsfunktion ist

$\displaystyle\frac{1}{\tau}f_{out}(\vec{v})=\displaystyle\int d\vec{v}_1d\vec{v}_12d\vec{v}_22f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v},t)|\vec{v}-\vec{v}_1|\sigma(\vec{v},\vec{v}_1\rightarrow\vec{v}_12,\vec{v}_22)$

(ID 9080)

Mit dem Kollision, die beitr gt

$f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22$



und diejenigen, die reduziert Partikel

$\displaystyle\frac{1}{\tau}f_{in}(\vec{v})=\displaystyle\int d\vec{v}_1d\vec{v}_2d\vec{v}_12f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v})$



erh lt man den Austauschfaktor

$\displaystyle\frac{1}{\tau}(f_{in}-f_{out})=\displaystyle\int d\vec{v}_1d\vec{v}2d\vec{v}_12(f(\vec{x},\vec{v}2,t)f(\vec{x},\vec{v}_12,t)-f(\vec{x},\vec{v},t)f(\vec{x},\vec{v}_1,t))|\vec{v}-\vec{v}_1|\sigma(\vec{v},\vec{v}_1\rightarrow\vec{v}2,\vec{v}_12)$

(ID 9081)


ID:(1112, 0)