Utilizador:


Força de uma mola

Storyboard

A força gravitacional é definida como o produto da massa gravitacional pela aceleração gravitacional.

A aceleração gravitacional varia de acordo com o planeta ou lua que está sendo considerado. Enquanto na Terra a aceleração gravitacional $g$ é de 9,8 m/s², na Lua é de 1,625 m/s².

>Modelo

ID:(1413, 0)



Modelo

Top

>Top



Parâmetros

Símbolo
Texto
Variáve
Valor
Unidades
Calcular
Valeur MKS
Unidades MKS
$a_0$
a_0
Aceleração constante
m/s^2
$g$
g
Aceleração gravitacional
m/s^2
$m_g$
m_g
Massa gravitacional
kg
$m_i$
m_i
Massa inercial
kg
$t_0$
t_0
Tempo inicial
s
$s_0$
s_0
Velocidade
m
$v_0$
v_0
Velocidade inicial
m/s

Variáveis

Símbolo
Texto
Variáve
Valor
Unidades
Calcular
Valeur MKS
Unidades MKS
$F$
F
Força com massa constante
N
$F_g$
F_g
Força gravitacional
N
$s$
s
Posição
m
$t$
t
Tempo
s
$v$
v
Velocidade
m/s

Cálculos


Primeiro, selecione a equação: para , depois, selecione a variável: para

Cálculos

Símbolo
Equação
Resolvido
Traduzido

Cálculos

Símbolo
Equação
Resolvido
Traduzido

Variáve Dado Calcular Objetivo : Equação A ser usado




Equações

#
Equação

$ F = F_g $

F = F_g


$ F = m_i a_0 $

F = m_i * a


$ F_g = m_g g $

F_g = m_g * g


$ m_g = m_i $

m_g = m_i


$ s = s_0 + v_0 ( t - t_0 )+\displaystyle\frac{1}{2} a_0 ( t - t_0 )^2$

s = s_0 + v_0 * ( t - t_0 )+ a_0 *( t - t_0 )^2/2


$ s = s_0 +\displaystyle\frac{ v ^2- v_0 ^2}{2 a_0 }$

s = s_0 +( v ^2- v_0 ^2)/(2* a_0 )


$ v = v_0 + a_0 ( t - t_0 )$

v = v_0 + a_0 *( t - t_0 )

ID:(15844, 0)



Mecanismos

Iframe

>Top



Código
Conceito

Mecanismos

ID:(15417, 0)



Conceito de massa gravitacional

Conceito

>Top


A massa gravitacional está associada ao que Newton definiu como a lei da gravitação e indica a força que um corpo exerce sobre outro.

Não deve ser confundida com a massa inercial, que indica a resistência que um corpo gera ao mudar seu estado de movimento. Esta última está associada à inércia experimentada pelos corpos e é denominada massa inercial.

ID:(14464, 0)



Igualdade das massas inercial e gravitacional

Equação

>Top, >Modelo


As massas que Newton utilizou em seus princípios estão relacionadas à inércia dos corpos, o que leva ao conceito de la massa inercial ($m_i$).

A lei de Newton, que está ligada à força entre corpos devido às suas massas, está relacionada à gravidade, sendo conhecida como la massa gravitacional ($m_g$).

Empiricamente, concluiu-se que ambas as massas são equivalentes, e, portanto, definimos

$ m_g = m_i $

$m_g$
Massa gravitacional
$kg$
8762
$m_i$
Massa inercial
$kg$
6290

Einstein foi quem questionou essa igualdade e, a partir dessa dúvida, compreendeu por que ambas 'aparecem' iguais em sua teoria da gravidade. Em seu argumento, Einstein explicou que as massas deformam o espaço, e essa deformação do espaço causa uma mudança no comportamento dos corpos. Assim, as massas acabam sendo equivalentes. O conceito revolucionário da curvatura do espaço implica que até mesmo a luz, que não tem massa, é afetada por corpos celestes, contradizendo a teoria da gravitação de Newton. Isso foi demonstrado experimentalmente ao estudar o comportamento da luz durante um eclipse solar. Nessa situação, os feixes de luz são desviados devido à presença do sol, permitindo a observação de estrelas que estão atrás dele.

ID:(12552, 0)



Aceleração no campo gravitacional

Equação

>Top, >Modelo


Quando uma força é aplicada a uma massa, impulsionando-a dentro do campo gravitacional da Terra, surge a seguinte relação:

$ F = F_g $

$F$
Força com massa constante
$N$
9046
$F_g$
Força gravitacional
$N$
4977

ID:(12813, 0)



Caso de força massa constante

Equação

>Top, >Modelo


No caso em que la massa inercial ($m_i$) é igual a la massa inicial ($m_0$),

$ m_g = m_i $



a derivada do momento será igual à massa multiplicada pela derivada de la velocidade ($v$). Dado que a derivada da velocidade é La aceleração instantânea ($a$), temos que la força com massa constante ($F$) é igual a

$ F = m_i a_0 $

$ F = m_i a $

$a$
$a_0$
Aceleração constante
$m/s^2$
5297
$F$
Força com massa constante
$N$
9046
$m_i$
Massa inercial
$kg$
6290

Dado que o momento ($p$) se define con la massa inercial ($m_i$) y la velocidade ($v$),

$ p = m_i v $



Si la massa inercial ($m_i$) é igual a la massa inicial ($m_0$), então podemos derivar o momento em relação ao tempo e obter la força com massa constante ($F$):

$F=\displaystyle\frac{d}{dt}p=m_i\displaystyle\frac{d}{dt}v=m_ia$



Portanto, chegamos à conclusão de que

$ F = m_i a $

ID:(10975, 0)



Força gravitacional

Equação

>Top, >Modelo


La força gravitacional ($F_g$) baseia-se em la massa gravitacional ($m_g$) do objeto e em uma constante que reflete a intensidade da gravidade na superfície do planeta. Esta última é identificada por la aceleração gravitacional ($g$), que é igual a $9.8 m/s^2$.

Consequentemente, conclui-se que:

$ F_g = m_g g $

$g$
Aceleração gravitacional
9.8
$m/s^2$
5310
$F_g$
Força gravitacional
$N$
4977
$m_g$
Massa gravitacional
$kg$
8762

ID:(3241, 0)



Velocidade com aceleração constante

Equação

>Top, >Modelo


Se la aceleração constante ($a_0$), então la aceleração média ($\bar{a}$) é igual ao valor da aceleração, ou seja,

$ a_0 = \bar{a} $

.

Neste caso, la velocidade ($v$) como função de o tempo ($t$) pode ser calculada lembrando que está associada à diferença entre la velocidade ($v$) e la velocidade inicial ($v_0$), bem como o tempo ($t$) e o tempo inicial ($t_0$).

$ v = v_0 + a_0 ( t - t_0 )$

$a_0$
Aceleração constante
$m/s^2$
5297
$t$
Tempo
$s$
5264
$t_0$
Tempo inicial
$s$
5265
$v$
Velocidade
$m/s$
6029
$v_0$
Velocidade inicial
$m/s$
5188

No caso em que la aceleração constante ($a_0$) é igual a la aceleração média ($\bar{a}$), será igual a

$ a_0 = \bar{a} $

.

Portanto, se considerarmos la diferença de velocidade ($\Delta v$) como

$ \Delta v \equiv v - v_0 $



e o tempo decorrido ($\Delta t$) como

$ \Delta t \equiv t - t_0 $

,

temos que a equação para la aceleração constante ($a_0$)

$ \bar{a} \equiv\displaystyle\frac{ \Delta v }{ \Delta t }$



pode ser escrita como

$a_0 = \bar{a} = \displaystyle\frac{\Delta v}{\Delta t} = \displaystyle\frac{v - v_0}{t - t_0}$



portanto, ao rearranjarmos, obtemos

$ v = v_0 + a_0 ( t - t_0 )$

.

Dessa forma, a equação representa uma linha reta no espaço velocidade-tempo.

ID:(3156, 0)



Eu ando com aceleração constante

Equação

>Top, >Modelo


No caso de uma aceleração constante ($a_0$), la velocidade ($v$) varia de forma linear com o tempo ($t$), usando la velocidade inicial ($v_0$) e o tempo inicial ($t_0$):

$ v = v_0 + a_0 ( t - t_0 )$



Portanto, podemos calcular a área sob essa reta, o que nos leva a la distância percorrida em um tempo ($\Delta s$), permitindo calcular la posição ($s$) com la velocidade ($s_0$), resultando em:

$ s = s_0 + v_0 ( t - t_0 )+\displaystyle\frac{1}{2} a_0 ( t - t_0 )^2$

$a_0$
Aceleração constante
$m/s^2$
5297
$s$
Posição
$m$
9899
$t$
Tempo
$s$
5264
$t_0$
Tempo inicial
$s$
5265
$s_0$
Velocidade
$m$
5336
$v_0$
Velocidade inicial
$m/s$
5188

No caso de la aceleração constante ($a_0$), la velocidade ($v$) em função de o tempo ($t$) é uma reta que passa por o tempo inicial ($t_0$) e la velocidade inicial ($v_0$) da forma:

$ v = v_0 + a_0 ( t - t_0 )$



Como la distância percorrida em um tempo ($\Delta s$) é igual à área sob a curva velocidade-tempo, podemos somar a contribuição do retângulo:

$v_0(t-t_0)$



e do triângulo:

$\displaystyle\frac{1}{2}a_0(t-t_0)^2$



Com isso, obtemos com la posição ($s$) e la velocidade ($s_0$):

$ \Delta s \equiv s - s_0 $



Resultando em:

$ s = s_0 + v_0 ( t - t_0 )+\displaystyle\frac{1}{2} a_0 ( t - t_0 )^2$

Isso corresponde à forma geral de uma parábola.

ID:(3157, 0)



Caminho de aceleração/frenagem em função da velocidade

Equação

>Top, >Modelo


No caso de uma aceleração constante, podemos calcular la posição ($s$) a partir de la velocidade ($s_0$), la velocidade inicial ($v_0$), o tempo ($t$) e o tempo inicial ($t_0$) com a seguinte equação:

$ s = s_0 + v_0 ( t - t_0 )+\displaystyle\frac{1}{2} a_0 ( t - t_0 )^2$



Isso nos permite calcular a relação entre a distância percorrida durante a aceleração/desaceleração em função da mudança de velocidade:

$ s = s_0 +\displaystyle\frac{ v ^2- v_0 ^2}{2 a_0 }$

$a_0$
Aceleração constante
$m/s^2$
5297
$s$
Posição
$m$
9899
$s_0$
Velocidade
$m$
5336
$v$
Velocidade
$m/s$
6029
$v_0$
Velocidade inicial
$m/s$
5188

Se resolvermos as equações para o tempo ($t$) e o tempo inicial ($t_0$) na equação de la velocidade ($v$), que depende de la velocidade inicial ($v_0$) e la aceleração constante ($a_0$):

$ v = v_0 + a_0 ( t - t_0 )$



obtemos:

$t - t_0= \displaystyle\frac{v - v_0}{a_0}$



Então, substituindo essa expressão na equação de la posição ($s$) com la velocidade ($s_0$):

$ s = s_0 + v_0 ( t - t_0 )+\displaystyle\frac{1}{2} a_0 ( t - t_0 )^2$



obtemos uma expressão do caminho percorrido em função da velocidade:

$ s = s_0 +\displaystyle\frac{ v ^2- v_0 ^2}{2 a_0 }$

ID:(3158, 0)