Transporte en Plantas

Storyboard

>Model

ID:(525, 0)



Presión Osmótica en Raices

Description

ID:(1611, 0)



Estructura de las Ramas

Description

ID:(1614, 0)



Apoyo para la Evaporación

Description

ID:(1616, 0)



Transporte en Plantas

Description

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$T$
T
Absolute temperature
K
$\bar{v}$
v
Average speed of a particle
m/s
$h$
h
Column height
m
$c_1$
c_1
Concentration 1
mol/m^3
$c_2$
c_2
Concentration 2
mol/m^3
$dc_n$
dc_n
Concentration variation
mol/m^3
$r$
r
Curvature radio
m
$D$
D
Diffusion Constant
m/s^2
$dx$
dx
Distancia de Posiciones
m
$l_r$
l_r
Free Path in Function of the Radio and Particle Concentration
m
$\Delta h$
Dh
Height difference
m
$\rho_w$
rho_w
Liquid density
kg/m^3
$c_m$
c_m
Molar concentration
mol/m^3
$\Delta c$
Dc
Molar concentration difference
mol/m^3
$n$
n
Número de Estomas por Hoja ($n$)
m^3/s
$N$
N
Número de Hoja ($N$)
m^3/s
$\Psi$
Psi
Osmotic pressure
Pa
$j$
j
Particle flux density
1/m^2s
$\Delta p$
Dp
Pressure difference
Pa
$p_e$
p_e
Saturated water vapor pressure over droplet
Pa
$s$
s
Sección de las Estomas ($s$)
m^2
$\sigma$
sigma
Surface Tension
N/m
$p_c$
p_c
Surface tension pressure
Pa
$S$
S
Total surface area to evaporate
m^2
$\Delta p$
Dp
Variación de la Presión
Pa

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

La diferencia de presi n neecsaria para transportar liquido por el tallo es $\Delta p=\displaystyle\frac{2\sigma}{r}+\Psi-\rho g\Delta h$ donde $\sigma$ es la tensi n superficial, $r$ es el radio del capilar, $\Psi$ la presi n osmotica, $\rho$ la densidad del agua, $g$ la aceleraci n gravitacional y $\Delta h$ la altura del tallo. Si se resume la persi n capilar como $p_c=\displaystyle\frac{2\sigma}{r}$ la expresi n se puede simplificar por $\Delta p=p_c+\Psi-\rho g\Delta h$

(ID 7223)

El transporte a traves del tallo es realizado ante todo bajo la fuerza capilar que surge al evaporar el agua en la superficie con una tensi n igual a $\displaystyle\frac{2\sigma}{r}$ donde $\sigma$ es la tnsi n superficial y $r$ el radio del capilar. Adicionalmente la raiz contribuey con la presi n somotica $\Psi$ siendo asi la diferencia de presi n total $\Delta p=\displaystyle\frac{2\sigma}{r}-\Psi$

(ID 4831)

In 1855, Adolf Fick [1] formulated an equation for the calculation of the diffusion Constant ($D$), resulting in the particle flux density ($j$) due to the concentration variation ($dc_n$) along ERROR:10192,0:

$ j =- D \displaystyle\frac{ dc_n }{ dz }$

[1] " ber Diffusion" (On Diffusion), Adolf Fick, Annalen der Physik und Chemie, Volume 170, pages 59-86 (1855)

(ID 4820)

The difference in concentration $c_1$ and $c_2$ at the ends of the membrane results in the difference:

$dc=c_2-c_1$

(ID 3882)

The diffusion constant $D$ can be calculated from the average velocity $\bar{v}$ and the mean free path $\bar{l}$ of the particles.

$ D =\displaystyle\frac{1}{3} \bar{v} \bar{l} $



It is important to recognize that both the mean free path and the average velocity depend on temperature, and consequently, so does the diffusion constant. Therefore, when values for the so-called constant are published, the temperature to which it applies is always specified.

(ID 3186)


ID:(525, 0)