Multiples lentes
Image
Cuando se acoplan dos lentes con sus respectivos focos, el primer lente genera una imagen que funciona como objeto para el segundo lente que a su vez genera una imagen de una imagen:
ID:(9465, 0)
Position and focus of concave lens
Equation
Por similitud de los triángulos de los tamaños del objeto y la imagen y las posiciones del objeto y foco permite por similitud de triángulos mostrar que:
$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$ |
Una relación se puede armar con los triángulos del lado del objeto. En este caso la similitud nos permite escribir que el tamaño del objeto
$\displaystyle\frac{a_o}{s_o-f}=\displaystyle\frac{a_i}{f}$
Con la relación de similitud de los triángulos
$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$ |
se puede mostrar que se cumple:
$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$ |
ID:(3347, 0)
Proportions size and position of concave lens
Equation
For any lens you can draw characteristic beams with which you can similarly show that the sizes of the object and the image are in the same proportion as their distances to the optical element (lens or mirror).
If the object has a size
$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$ |
ID:(3346, 0)
Equation of Focus for Eye Lens
Equation
Si observamos la sección imagen (entre lente y cristalino) - cristalino - imagen sobre la retina, se puede aplicar la relación entre foco
$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$ |
En este caso no disponemos de la distancia entre imagen entre lente y cristalino y cristalino. Sin embargo se se define la la distancia entre lente y cristalino como
$\displaystyle\frac{1}{ f_c }=\displaystyle\frac{1}{ D - s_i }+ \displaystyle\frac{1}{ s_b }$ |
donde
ID:(3354, 0)
Distance Optical Lens Lens Equation
Equation
De la ecuación para el foco del lente óptico
$\displaystyle\frac{1}{ f_{lv} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_i }$ |
y la del cristalino
$\displaystyle\frac{1}{ f_c }=\displaystyle\frac{1}{ D - s_i }+ \displaystyle\frac{1}{ s_b }$ |
la distancia entre lente y cristalino
$\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ D -\displaystyle\frac{1}{\displaystyle\frac{1}{ f_{lv} }-\displaystyle\frac{1}{ s_b }}}=\displaystyle\frac{1}{ f_c }$ |
Como es
$\displaystyle\frac{1}{ f_{lv} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_i }$ |
\\n\\nse tiene que\\n\\n
$ s_i = \displaystyle\frac{1}{\displaystyle\frac{1}{ f_l } - \displaystyle\frac{1}{ s_o }}$
con lo que
$\displaystyle\frac{1}{ f_c }=\displaystyle\frac{1}{ D - s_i }+ \displaystyle\frac{1}{ s_b }$ |
se obtiene
$\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ D -\displaystyle\frac{1}{\displaystyle\frac{1}{ f_{lv} }-\displaystyle\frac{1}{ s_b }}}=\displaystyle\frac{1}{ f_c }$ |
donde
ID:(3355, 0)
Equation of Focus for Optical Lens
Equation
Si observamos la sección objeto - lente óptico - imagen (entre lente y cristalino) se puede aplicar la relación entre foco
$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$ |
Si en este caso el foco es
$\displaystyle\frac{1}{ f_{lv} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_i }$ |
donde
ID:(3353, 0)
Calculating the focus of a Bi-Convex Simple Lens
Equation
Una caso especial es aquel en que los radios son iguales, o sea
$\displaystyle\frac{1}{ f_{vsd} }=( n -1)\left(\displaystyle\frac{2}{ R }-\displaystyle\frac{( n -1) d }{ n R ^2}\right)$ |
ID:(3432, 0)
Calculating the Focus of a bi-convex thickness Lens
Equation
Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene un indice de refracción
$\displaystyle\frac{1}{ f_{vvd} }=( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }-\displaystyle\frac{( n -1)d}{ n R_1 R_2 }\right)$ |
ID:(3348, 0)
Cálculo del foco de un lente convexo-concavo grueso simétrico
Equation
Una caso especial es aquel en que los radios son iguales, o sea
$\displaystyle\frac{1}{ f_{vcs} }=\displaystyle\frac{( n -1)^2 d }{ n R ^2}$ |
ID:(3430, 0)
Cálculo del foco de un lente convexo-cóncavo grueso
Equation
Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene vidrio con indice de refracción
$\displaystyle\frac{1}{ f_{vcs} }=( n -1)\left(\displaystyle\frac{1}{ R_1 }-\displaystyle\frac{1}{ R_2 }+\displaystyle\frac{( n -1) d }{ n R_1 R_2 }\right)$ |
ID:(3350, 0)
Calculating the Focus of a Simple Bi-Concave Lens
Equation
Una caso especial es aquel en que los radios son iguales, o sea
$\displaystyle\frac{1}{ f_{csd} }=-( n -1)\left(\displaystyle\frac{2}{ R } +\displaystyle\frac{( n -1) d }{ n R ^2}\right)$ |
ID:(3431, 0)
Cálculo del foco de un lente concavo-convexo grueso simétrico
Equation
Una caso especial es aquel en que los radios son iguales, o sea
$\displaystyle\frac{1}{ f_{cvs} }=\displaystyle\frac{( n -1)^2 d }{ n R ^2}$ |
ID:(3429, 0)
Calculating the Focus of a bi-concave thickness Lens
Equation
Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene vidrio con indice de refracción
$\displaystyle\frac{1}{ f_{ccd} }=-( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }+\displaystyle\frac{( n -1)d}{ n R_1 R_2 }\right)$ |
ID:(3349, 0)