Sound propagation

Storyboard

The sound wave is propagated so that its energy per area element is reduced as it moves away from the source.

>Model

ID:(386, 0)



Propagation depending on the Intensity at source

Top

>Top


Si se considera una esfera en torno de la fuente a un radio r_0 la potencia W sera igual a

$W=4\pi r_0^2 I_0$



por lo que la intensidad es con distance between Emitter and Receiver $m$, intensity in the distance $W/m^2$, pi $rad$ and sound Power $W$

$ I =\displaystyle\frac{1}{4 \pi }\displaystyle\frac{ W }{ r ^2}$



a una distancia r tendrá con distance between Emitter and Receiver $m$, intensity in the distance $W/m^2$, pi $rad$ and sound Power $W$ la magnitud:

$ I =\displaystyle\frac{ r_0 ^2}{ r ^2} I_0 $

ID:(15567, 0)



Propagation of the intensity

Top

>Top


Si consideramos una fuente puntual, la intensidad del sonido es con

$ I =\displaystyle\frac{ P }{ S }$



se propagara en forma esférica. En este caso la superficie es con

$ S = 4 \pi r ^2$



con lo que la intensidad es con

$ I =\displaystyle\frac{1}{4 \pi }\displaystyle\frac{ W }{ r ^2}$

ID:(15566, 0)



Propagation of Sound

Image

>Top


Sound propagates and interacts with various edges and objects. On flat surfaces it is reflected under the same angle it affects (ground, building). However, the wind leads to refraction with what the beams bend:

ID:(516, 0)



Spherical propagation

Image

>Top


For a point source, the sound spreads in all directions uniformly. Therefore, the sound level will be reduced due to the effect that the energy is distributed over a surface of a sphere of radius r equal to the path traveled

ID:(11829, 0)



Propagation of the intensity

Equation

>Top, >Model


Si consideramos una fuente puntual, la intensidad del sonido es con

$ I =\displaystyle\frac{ P }{ S }$



se propagara en forma esférica. En este caso la superficie es con

$ S = 4 \pi r ^2$



con lo que la intensidad es con

$ I =\displaystyle\frac{1}{4 \pi }\displaystyle\frac{ W }{ r ^2}$

$r$
Distance between Emitter and Receiver
$m$
5092
$I$
Intensity in the distance
$W/m^2$
5093
$\pi$
Pi
3.1415927
$rad$
5057
$W$
Sound Power
$W$
5090

ID:(3402, 0)



Propagation depending on the Intensity at source

Equation

>Top, >Model


Si se considera una esfera en torno de la fuente a un radio r_0 la potencia W sera igual a

$W=4\pi r_0^2 I_0$



por lo que la intensidad es con distance between Emitter and Receiver $m$, intensity in the distance $W/m^2$, pi $rad$ and sound Power $W$

$ I =\displaystyle\frac{1}{4 \pi }\displaystyle\frac{ W }{ r ^2}$



a una distancia r tendrá con distance between Emitter and Receiver $m$, intensity in the distance $W/m^2$, pi $rad$ and sound Power $W$ la magnitud:

$ I =\displaystyle\frac{ r_0 ^2}{ r ^2} I_0 $

$r$
Distance between Emitter and Receiver
$m$
5092
$I$
Intensity in the distance
$W/m^2$
5093
$I_0$
Intensity on the Surface of the Source
$W/m^2$
5095
$r_0$
Source Size
$m$
5094

ID:(3403, 0)



Sum of intensities and powers

Image

>Top


Since the different beams do not interact, the intensity and power that occurs at any point in space is equal to the sum of the individual contributions:

ID:(11830, 0)



Sum of intensities

Equation

>Top, >Model


Como los distintos haces no interactuan la intensidad que se da en cualquier punto del espacio es igual a la suma de las contribuciones individuales.

Con la intensidad total es

$ I = \displaystyle\sum_i I_i $

$I_i$
Intensidad Sonora de la fuente i
$W/m^2$
8789
$I_{tot}$
Total Loudness
$W/m^2$
5178

ID:(11831, 0)



Sum of powers

Equation

>Top, >Model


Como los distintos haces no interactuan la potencia que se da en cualquier punto del espacio es igual a la suma de las contribuciones individuales.

Con la potencia total es

$ W = \displaystyle\sum_i W_i $

$W_i$
Potencia Sonora de la fuente i
$W$
8790
$W_{tot}$
Total sound power
$W$
5130

ID:(11832, 0)