Sound Intensity

Storyboard

Sound intensity is the energy by area and time that helps to understand how the sound wave is distributed spatially.

>Model

ID:(1588, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15459, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$I_{ref}$
I_ref
Reference intensity, air
W/m^2
$p_{ref}$
p_ref
Reference pressure
Pa
$P$
P
Sound Power
W

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$e$
e
Energy density
J/m^3
$\rho$
rho
Mean density
kg/m^3
$u$
u
Molecule speed
m/s
$L$
L
Noise level, air
dB
$S$
S
Section of Volume DV
m^2
$I$
I
Sound Intensity
W/m^2
$p$
p
Sound pressure
Pa
$c$
c
Speed of sound
m/s

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ e =\displaystyle\frac{1}{2} \rho u ^2$

e = rho * u ^2/2


$ I = c e $

I = c * e


$ I =\displaystyle\frac{ P }{ S }$

I = P / S


$ I =\displaystyle\frac{ p ^2}{2 \rho c }$

I = p ^2/(2* rho * c )


$ I =\displaystyle\frac{1}{2} \rho c u ^2$

I = rho * c * u ^2/2


$ I_{ref} =\displaystyle\frac{ p_{ref} ^2}{2 \rho c }$

I_ref = p_ref ^2/(2* rho * c )


$ L = 10 log_{10}\left(\displaystyle\frac{ I }{ I_{ref} }\right)$

L = 10* log10( I / I_ref )

ID:(15454, 0)



Acoustic intensity

Equation

>Top, >Model


Intensity is the power (energy per unit time, in joules per second or watts) per area emanating from a source.

Therefore, it is defined as the sound Intensity ($I$), the ratio between the sound Power ($P$) and the section of Volume DV ($S$), so it is:

$ I =\displaystyle\frac{ P }{ S }$

$S$
Section of Volume DV
$m^2$
5081
$I$
Sound Intensity
$W/m^2$
5091
$W$
Sound Power
$W$
5090

ID:(3193, 0)



Intensity based on the power density

Equation

>Top, >Model


Si se toma la energía E por oscilación se puede escribir la potencia en función de la energía y el periodo T se tiene que

$W=\displaystyle\frac{E}{T}$



Si por otro lado con la variación del volumen es

$ \Delta V = S \lambda $



y con section of Volume DV $m^2$, sound Intensity $W/m^2$ and sound Power $W$ la intensidad sonora es

$ I =\displaystyle\frac{ P }{ S }$



por lo que

$I=\displaystyle\frac{W}{S}=\displaystyle\frac{E}{ST}=\displaystyle\frac{cE}{ScT}=\displaystyle\frac{cE}{V}$



osea con section of Volume DV $m^2$, sound Intensity $W/m^2$ and sound Power $W$ es

$ I = c e $

$e$
Energy density
$J/m^3$
4932
$I$
Sound Intensity
$W/m^2$
5091
$c$
Speed of sound
$m/s$
5073

ID:(3406, 0)



Sound energy density

Equation

>Top, >Model


The the energy density ($e$) is obtained from the mean density ($\rho$) and the molecule speed ($u$) as follows:

$ e =\displaystyle\frac{1}{2} \rho u ^2$

$e$
Energy density
$J/m^3$
4932
$\rho$
Mean density
$kg/m^3$
5088
$u$
Molecule speed
$m/s$
5072

The energy that a sound wave contributes to the medium in which sound propagates corresponds to the kinetic energy of the particles. With the molecule speed ($u$) and the mass of a volume of the medium ($m$) The wave energy ($E$), it equals the kinetic energy:

$E=\displaystyle\frac{1}{2}mu^2$



the energy density ($e$) is obtained by dividing the wave energy ($E$) by the volume with molecules ($\Delta V$), giving:

$e=\displaystyle\frac{E}{\Delta V}$



Introducing the mean density ($\rho$) as:

$\rho=\displaystyle\frac{m}{\Delta V}$



yields the energy density:

$ e =\displaystyle\frac{1}{2} \rho u ^2$

ID:(3400, 0)



Intensity versus the molecule speed

Equation

>Top, >Model


Como la densidad de la energía cinética es con energy density $J/m^3$, mean density $kg/m^3$ and molecule speed $m/s$

$ e =\displaystyle\frac{1}{2} \rho u ^2$



se tiene que con energy density $J/m^3$, sound Intensity $W/m^2$ and speed of sound $m/s$

$ I = c e $



que la intensidad es con energy density $J/m^3$, sound Intensity $W/m^2$ and speed of sound $m/s$

$ I =\displaystyle\frac{1}{2} \rho c u ^2$

$\rho$
Mean density
$kg/m^3$
5088
$u$
Molecule speed
$m/s$
5072
$I$
Sound Intensity
$W/m^2$
5091
$c$
Speed of sound
$m/s$
5073

ID:(3404, 0)



Intensity depending on the sound pressure

Equation

>Top, >Model


The sound Intensity ($I$) can be calculated from the mean density ($\rho$), the sound pressure ($p$) The molar concentration ($c$) with

$ I =\displaystyle\frac{ p ^2}{2 \rho c }$

$\rho$
Mean density
$kg/m^3$
5088
$I$
Sound Intensity
$W/m^2$
5091
$p$
Sound pressure
$Pa$
5084
$c$
Speed of sound
$m/s$
5073

The sound Intensity ($I$) can be calculated from the mean density ($\rho$), the molecule speed ($u$), and the molar concentration ($c$) using

$ I =\displaystyle\frac{1}{2} \rho c u ^2$



and since the sound pressure ($p$) is defined as

$ p = \rho c u $



it follows that the sound Intensity ($I$) can be expressed in terms of the sound pressure ($p$) by

$ I =\displaystyle\frac{ p ^2}{2 \rho c }$

ID:(3405, 0)



Noise level as function of the sound intensity

Equation

>Top, >Model


Just like in other human sensory systems, our hearing is capable of detecting pressure variations over a wide range $(10^{-5}-10^2 Pa)$. However, when we perceive a signal doubling, it doesn't correspond to double the pressure or sound intensity, but rather the square of these magnitudes. In other words, our signal detection capacity operates on a logarithmic and nonlinear scale.

Hence, the noise level, air ($L$) is indicated not in the sound Intensity ($I$) or the reference intensity, air ($I_{ref}$), but in the base ten logarithm of these magnitudes. Particularly, we take the lowest sound intensity we can perceive, the reference intensity, air ($I_{ref}$)

, and use it as a reference. The new scale is defined with as follows:

$ L = 10 log_{10}\left(\displaystyle\frac{ I }{ I_{ref} }\right)$

$L$
Noise level, air
$dB$
5119
$I_{ref}$
Reference intensity, air
20e-6
$W/m^2$
5120
$I$
Sound Intensity
$W/m^2$
5091

ID:(3194, 0)



Intensity reference values

Equation

>Top, >Model


The sound pressure level that we can detect with our ear, denoted as the reference pressure, water ($p_{ref}$), is $2 \times 10^{-5} , Pa$.

Since the sound Intensity ($I$) is associated with the sound pressure ($p$), the mean density ($\rho$), and the speed of sound ($c$), and is equal to

$ I =\displaystyle\frac{ p ^2}{2 \rho c }$



we can calculate a value for the reference intensity, air ($I_{ref}$) based on the value of the reference pressure, water ($p_{ref}$):

$ I_{ref} =\displaystyle\frac{ p_{ref} ^2}{2 \rho c }$

$\rho$
Mean density
$kg/m^3$
5088
$I_{ref}$
Reference intensity, air
20e-6
$W/m^2$
5120
$p_{ref}$
Reference pressure
3.65e+10
$Pa$
5121
$c$
Speed of sound
$m/s$
5073

This is achieved with a density of $1.27 , kg/m^3$ and a sound speed of $331 , m/s$, equivalent to $9.5 \times 10^{-13} , W/m^2$.

ID:(3409, 0)