Dissolution of salt in the ocean

Image

>Top


The ions in the salt dissociate and are surrounded by water molecules forming clusters of a size greater than that of the original ion:

ID:(11991, 0)



Salt ion hydrate

Image

>Top


Once the ion is surrounded by water molecules, a second layer of molecules is formed, which are linked by bridges:

ID:(11992, 0)



Electric field acts on ion hydrate of salt

Image

>Top


If an electric field is applied to water with salt ions, the latter begin to move towards the positive poles:

ID:(11993, 0)



Electrical conductivity as a function of salinity

Image

>Top


The electrical conductivity as a function of salinity and temperature that is explained by the greater presence of ions and the greater mobility at higher temperatures:

ID:(11994, 0)



Electrical conductivity as a function of pressure

Image

>Top


Electrical conductivity as a function of pressure and temperature:

ID:(11995, 0)



Specific conductivity measurement of seawater

Equation

>Top, >Model


The specific conductivity measured in seawater under atmospheric pressure can be empirically represented as

$ \gamma_e = a T + b S + c T S + d $

ID:(11999, 0)



Values of electrical conductivity as a function of salinity

Image

>Top


The following table shows electrical conductivity as a function of salinity:

ID:(11996, 0)



Medición de salinidad

Equation

>Top, >Model


Dado que la resistencia del agua marina depende de su salinidad, se puede medir la resistencia para determinar el nivel de salinidad. Esto se hace comparando las conductividades de una muestra de agua marina con una solución standard de KCl (clorato de potasio). Se miden la conductividad especifica de ambas muestras a una temperatura de 15C y 1 atm de presión y establece la relación\\n\\n

$K=\sqrt{\displaystyle\frac{\gamma_w}{\gamma_{KCl}}}$



y calcula la salinidad con

$ S = a_0 + a_1 K + a_2 K^2 + a_3 K^3 + a_4 K^4 + a_5 K^5$

con

a_0=0.0080

a_1=-0.1692

a_2=25.3851

a_3=14.0941

a_4=-7.0261

a_5=2.7081

ID:(12424, 0)