Fourier series
Equation
Every time function
$ x(t) = \displaystyle\sum_{k=-\infty}^{\infty}( a_k \cos 2 \pi \nu_k t + b_k \sin 2 \pi \nu_k t )$ |
ID:(14342, 0)
Base frequency
Equation
The base frequency
u_k
$ \nu_k = \displaystyle\frac{ k }{ T }$ |
ID:(14343, 0)
Definition coefficient $a_k$
Equation
To calculate the coefficient
$ x(t) = \displaystyle\sum_{k=-\infty}^{\infty}( a_k \cos 2 \pi \nu_k t + b_k \sin 2 \pi \nu_k t )$ |
the function
$ a_k = \displaystyle\frac{1}{ T } \displaystyle\int_0^T x(t) \cos(2 \pi \nu_k t ) dt$ |
ID:(14347, 0)
Definition coefficient $b_k$
Equation
To calculate the coefficient
$ x(t) = \displaystyle\sum_{k=-\infty}^{\infty}( a_k \cos 2 \pi \nu_k t + b_k \sin 2 \pi \nu_k t )$ |
the function
$ b_k = \displaystyle\frac{1}{ T } \displaystyle\int_0^T x(t) \sin(2 \pi \nu_k t ) dt $ |
ID:(14348, 0)
Calculate coefficient $a_k$
Equation
To estimate the integral
$ a_k = \displaystyle\frac{1}{ T } \displaystyle\int_0^T x(t) \cos(2 \pi \nu_k t ) dt$ |
you can discretize the function
$ a_k = \displaystyle\frac{1}{ T } \displaystyle\sum_{n=0}^{ N -1} x_n \cos(2 \pi \nu_k n \Delta t )$ |
ID:(14349, 0)
Calculate coefficient $b_k$
Equation
To estimate the integral
$ b_k = \displaystyle\frac{1}{ T } \displaystyle\int_0^T x(t) \sin(2 \pi \nu_k t ) dt $ |
you can discretize the function
$ b_k = \displaystyle\frac{1}{ T } \displaystyle\sum_{n=0}^{ N -1} x_n \sin(2 \pi \nu_k n \Delta t )$ |
ID:(14350, 0)
Coefficient in complex form
Equation
The coefficients of the Fourier transform
$ x(t) = \displaystyle\sum_{k=-\infty}^{\infty}( a_k \cos 2 \pi \nu_k t + b_k \sin 2 \pi \nu_k t )$ |
can be regrouped as a complex number by defining
$ X_k = a_k - i b_k $ |
ID:(14352, 0)
Complex version of the Fourier series
Equation
Fourier transform
$ x(t) = \displaystyle\sum_{k=-\infty}^{\infty}( a_k \cos 2 \pi \nu_k t + b_k \sin 2 \pi \nu_k t )$ |
you can with Euler\'s relation
the definition
$ X_k = a_k - i b_k $ |
and the decreticization of time
$ t_n = n \Delta t $ |
redefine as the discrete transforms on the complex space of the time series
$ x_n = \displaystyle\sum_{k=0}^{N-1} X_k e^{ i 2 \pi \nu_k n \Delta t }$ |
ID:(14351, 0)
Definition coefficient $X_k$
Equation
To calculate the coefficient
$ x_n = \displaystyle\sum_{k=0}^{N-1} X_k e^{ i 2 \pi \nu_k n \Delta t }$ |
the function
$ X_k = \displaystyle\frac{1}{ T } \displaystyle\int_{0}^{ T } x(t) e^{ i 2 \pi \nu_k t } dt$ |
ID:(14353, 0)
Calculate coefficient $X_k$
Equation
To estimate the integral
$ X_k = \displaystyle\frac{1}{ T } \displaystyle\int_{0}^{ T } x(t) e^{ i 2 \pi \nu_k t } dt$ |
you can discretize the function
$ X_k = \displaystyle\frac{1}{ T } \displaystyle\sum_{ n =0}^{ N -1} x_n e^{ i 2 \pi \nu_k n \Delta t }$ |
ID:(14354, 0)
Magnitudes of the modes
Equation
If the complex coefficient is
$ X_k = a_k - i b_k $ |
Its magnitude is defined as
$ r_k = \sqrt{ a_k ^2 + b_k ^2}$ |
ID:(14355, 0)
Modes phase
Equation
If the complex coefficient is
$ X_k = a_k - i b_k $ |
the phase can be calculated from
$ \phi_k = \arctan\displaystyle\frac{ b_k }{ a_k }$ |
ID:(14356, 0)