Setup para MobilNet
Descripción
import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras.layers import Dense, Activation from tensorflow.keras.optimizers import Adam from tensorflow.keras.metrics import categorical_crossentropy from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.preprocessing import image from tensorflow.keras.models import Model from tensorflow.keras.applications import imagenet_utils from sklearn.metrics import confusion_matrix import itertools import os import shutil import random import matplotlib.pyplot as plt %matplotlib inline
ID:(13775, 0)
Routina para preparar imagen
Descripción
def prepare_image(file): img_path = 'data/MobileNet-samples/' img = image.load_img(img_path + file, target_size=(224,224)) img_array = image.img_to_array(img) img_array_expanded_dims = np.expand_dims(img_array,axis=0) return tf.keras.applications.mobilenet.preprocess_input(img_array_expanded_dims)
ID:(13777, 0)
Mostrar imagen
Descripción
from IPython.display import Image Image(filename='data/MobileNet-samples/1.PNG',width=300,height=200)
ID:(13778, 0)
Analizar imagen
Descripción
preprocessed_image = prepare_image('1.PNG') predictions = mobile.predict(preprocessed_image) results=imagenet_utils.decode_predictions(predictions) results
ID:(13779, 0)
Indicar objeto más probable
Descripción
assert results[0][0][1] == 'American_chameleon'
ID:(13780, 0)