Google-Landmarks Dataset
Beschreibung
Der Google-Landmarks-Datensatz enthält eine große Anzahl von Bildern von Orten auf der ganzen Welt.
Zugriff über: google-landmarks-dataset
ID:(13823, 0)
Bibliotheken aufrufen die für die Arbeit mit DELF
Beschreibung
Bibliotheken aufrufen die für die Arbeit mit DELF notwendig sind:
from absl import logging import matplotlib.pyplot as plt import numpy as np from PIL import Image, ImageOps from scipy.spatial import cKDTree from skimage.feature import plot_matches from skimage.measure import ransac from skimage.transform import AffineTransform from six import BytesIO import tensorflow as tf import tensorflow_hub as hub from six.moves.urllib.request import urlopen
ID:(13814, 0)
Bilder von Orten definieren
Beschreibung
Bilder von Orten definieren:
#@title Choose images images = 'Bridge of Sighs' #@param ['Bridge of Sighs', 'Golden Gate', 'Acropolis', 'Eiffel tower'] if images == 'Bridge of Sighs': # from: https://commons.wikimedia.org/wiki/File:Bridge_of_Sighs,_Oxford.jpg # by: N.H. Fischer IMAGE_1_URL = 'https://upload.wikimedia.org/wikipedia/commons/2/28/Bridge_of_Sighs%2C_Oxford.jpg' # from https://commons.wikimedia.org/wiki/File:The_Bridge_of_Sighs_and_Sheldonian_Theatre,_Oxford.jpg # by: Matthew Hoser IMAGE_2_URL = 'https://upload.wikimedia.org/wikipedia/commons/c/c3/The_Bridge_of_Sighs_and_Sheldonian_Theatre%2C_Oxford.jpg' elif images == 'Golden Gate': IMAGE_1_URL = 'https://upload.wikimedia.org/wikipedia/commons/1/1e/Golden_gate2.jpg' IMAGE_2_URL = 'https://upload.wikimedia.org/wikipedia/commons/3/3e/GoldenGateBridge.jpg' elif images == 'Acropolis': IMAGE_1_URL = 'https://upload.wikimedia.org/wikipedia/commons/c/ce/2006_01_21_Ath%C3%A8nes_Parth%C3%A9non.JPG' IMAGE_2_URL = 'https://upload.wikimedia.org/wikipedia/commons/5/5c/ACROPOLIS_1969_-_panoramio_-_jean_melis.jpg' else: IMAGE_1_URL = 'https://upload.wikimedia.org/wikipedia/commons/d/d8/Eiffel_Tower%2C_November_15%2C_2011.jpg' IMAGE_2_URL = 'https://upload.wikimedia.org/wikipedia/commons/a/a8/Eiffel_Tower_from_immediately_beside_it%2C_Paris_May_2008.jpg'
ID:(13815, 0)
Bild-Download- und Speicherfunktion
Beschreibung
Bild-Download- und Speicherfunktion:
def download_and_resize(name, url, new_width=256, new_height=256): path = tf.keras.utils.get_file(url.split('/')[-1], url) image = Image.open(path) image = ImageOps.fit(image, (new_width, new_height), Image.ANTIALIAS) return image
ID:(13816, 0)
Bilder herunterladen
Beschreibung
Bilder herunterladen:
image1 = download_and_resize('image_1.jpg', IMAGE_1_URL) image2 = download_and_resize('image_2.jpg', IMAGE_2_URL) plt.subplot(1,2,1) plt.imshow(image1) plt.subplot(1,2,2) plt.imshow(image2)
ID:(13817, 0)
Verbinden mit DELF
Beschreibung
Verbinden mit DELF:
delf = hub.load('https://tfhub.dev/google/delf/1').signatures['default']
ID:(13818, 0)
Definition der DELF-Abfragefunktion
Beschreibung
Definition der DELF-Abfragefunktion:
def run_delf(image): np_image = np.array(image) float_image = tf.image.convert_image_dtype(np_image, tf.float32) return delf( image=float_image, score_threshold=tf.constant(100.0), image_scales=tf.constant([0.25, 0.3536, 0.5, 0.7071, 1.0, 1.4142, 2.0]), max_feature_num=tf.constant(1000))
ID:(13819, 0)
DELF ausführen
Beschreibung
DELF ausführen:
result1 = run_delf(image1) result2 = run_delf(image2)
ID:(13820, 0)
Definieren von einer Funktion zum Verknüpfen von Merkmalen
Beschreibung
Definieren von einer Funktion zum Verknüpfen von Merkmalen:
#@title TensorFlow is not needed for this post-processing and visualization def match_images(image1, image2, result1, result2): distance_threshold = 0.8 # Read features. num_features_1 = result1['locations'].shape[0] print('Loaded image 1s %d features' % num_features_1) num_features_2 = result2['locations'].shape[0] print('Loaded image 2s %d features' % num_features_2) # Find nearest-neighbor matches using a KD tree. d1_tree = cKDTree(result1['descriptors']) _, indices = d1_tree.query( result2['descriptors'], distance_upper_bound=distance_threshold) # Select feature locations for putative matches. locations_2_to_use = np.array([ result2['locations'][i,] for i in range(num_features_2) if indices[i] != num_features_1 ]) locations_1_to_use = np.array([ result1['locations'][indices[i],] for i in range(num_features_2) if indices[i] != num_features_1 ]) # Perform geometric verification using RANSAC. _, inliers = ransac( (locations_1_to_use, locations_2_to_use), AffineTransform, min_samples=3, residual_threshold=20, max_trials=1000) print('Found %d inliers' % sum(inliers)) # Visualize correspondences. _, ax = plt.subplots() inlier_idxs = np.nonzero(inliers)[0] plot_matches( ax, image1, image2, locations_1_to_use, locations_2_to_use, np.column_stack((inlier_idxs, inlier_idxs)), matches_color='b') ax.axis('off') ax.set_title('DELF correspondences')
ID:(13821, 0)
Verbindungen zwischen Merkmalen anzeigen
Beschreibung
Verbindungen zwischen Merkmalen anzeigen:
match_images(image1, image2, result1, result2)
ID:(13822, 0)
Ladestruktur für Abfrage
Beschreibung
Ladestruktur für Abfrage:
tf.reset_default_graph() tf.logging.set_verbosity(tf.logging.FATAL) m = hub.Module('https://tfhub.dev/google/delf/1') # The module operates on a single image at a time, so define a placeholder to # feed an arbitrary image in. image_placeholder = tf.placeholder( tf.float32, shape=(None, None, 3), name='input_image') module_inputs = { 'image': image_placeholder, 'score_threshold': 100.0, 'image_scales': [0.25, 0.3536, 0.5, 0.7071, 1.0, 1.4142, 2.0], 'max_feature_num': 1000, } module_outputs = m(module_inputs, as_dict=True) image_tf = image_input_fn(db_images)
ID:(13824, 0)
Bilder zur Analyse importieren
Beschreibung
Bilder zur Analyse importieren:
with tf.train.MonitoredSession() as sess: results_dict = {} # Stores the locations and their descriptors for each image for image_path in db_images: image = sess.run(image_tf) print('Extracting locations and descriptors from %s' % image_path) results_dict[image_path] = sess.run( [module_outputs['locations'], module_outputs['descriptors']], feed_dict={image_placeholder: image}) locations_agg = np.concatenate([results_dict[img][0] for img in db_images]) descriptors_agg = np.concatenate([results_dict[img][1] for img in db_images]) accumulated_indexes_boundaries = list(accumulate([results_dict[img][0].shape[0] for img in db_images])) d_tree = cKDTree(descriptors_agg) # build the KD tree
ID:(13825, 0)
Ort bestimmung
Beschreibung
Ort bestimmung:
# Array to keep track of all candidates in database. inliers_counts = [] # Read the resized query image for plotting. img_1 = mpimg.imread(resized_image) for index in unique_image_indexes: locations_2_use_query, locations_2_use_db = get_locations_2_use(index, indices, accumulated_indexes_boundaries) # Perform geometric verification using RANSAC. _, inliers = ransac( (locations_2_use_db, locations_2_use_query), # source and destination coordinates AffineTransform, min_samples=3, residual_threshold=20, max_trials=1000) # If no inlier is found for a database candidate image, we continue on to the next one. if inliers is None or len(inliers) == 0: continue # the number of inliers as the score for retrieved images. inliers_counts.append({'index': index, 'inliers': sum(inliers)}) print('Found inliers for image {} -> {}'.format(index, sum(inliers))) # Visualize correspondences. _, ax = plt.subplots() img_2 = mpimg.imread(db_images[index]) inlier_idxs = np.nonzero(inliers)[0] plot_matches( ax, img_1, img_2, locations_2_use_db, locations_2_use_query, np.column_stack((inlier_idxs, inlier_idxs)), matches_color='b') ax.axis('off') ax.set_title('DELF correspondences') plt.show()
ID:(13827, 0)