Balance equation solution

Storyboard

The equations for the temperature of the earth's surface, bottom and top of the atmosphere can be solved by disturbance techniques. This is assumed small variations in solar intensity, albedos and coverage factors and it is estimated how these affect the variation of these temperatures.

>Model

ID:(575, 0)



Fundamentals of the model

Definition

Since the parameters of the model vary little around their mean values, a Taylor expansion can be performed around the mean values. This yields linear equations that can be solved exactly.

ID:(84, 0)



Basic model of radiative flux

Image

The following diagram illustrates the main radiative fluxes (visible and infrared) in a simplified Earth model:

This diagram represents, in a simplified manner, the interaction of radiation on Earth. Visible radiation from the sun reaches the Earth\'s surface, where it can be reflected back into space, absorbed by the Earth\'s surface and converted into infrared radiation, or absorbed by the atmosphere. In turn, the Earth emits infrared radiation into space.

These radiative fluxes are fundamental to understanding the energy balance of our planet and the processes that regulate climate.

ID:(7331, 0)



Assumption evolution of society

Note

To simulate the future development of climate, four possible scenarios were assumed:

- A1: Rapid economic growth, energy consumption triples by 2100. Population increase to 9 billion by 2050 and subsequent slow decline.

- A2: Moderate economic growth, energy consumption increases gradually but triples by 2100. Continuous population increase to 15 billion by 2100.

- B1: Rapid economic growth, energy consumption decreases by 2100. Population increase to 9 billion by 2050 and subsequent slow decline.

- B2: Slower economic growth, energy consumption increases significantly but stabilizes by 2100. Slow population increase to 10 billion by 2100.

For each of these scenarios, the following are estimated:

- Energy consumption and the way it is generated.

- Production and type of food consumed.

Additionally, the generation of corresponding gases is estimated.

ID:(7324, 0)



Balance Equations

Quote

In the case of equilibrium, the following three radiative equilibrium equations hold:

$(1 - a_a)(1 - \gamma_{\nu})I_s - \kappa (T_e - T_b) - \sigma\epsilon_eT_e^4 + \sigma\epsilon_b T_b^4 = 0$



$\kappa(T_e - T_b) + \gamma_i\sigma\epsilon_e T_e^4 - 2\sigma\epsilon_bT_b^4 = 0$



$(1 - a_a)\gamma_{\nu} + \sigma\epsilon_b T_b^4 - 2\sigma\epsilon_t T_t^4 = 0$

where $T_e$ is the temperature of the Earth, $T_b$ is the temperature of the lower atmosphere, and $T_t$ is the temperature of the upper atmosphere. Additionally, we have the average solar radiation $I_s$, the albedos of the atmosphere and Earth denoted by $a_a$ and $a_e$ respectively, $\gamma_{

u}$ and $\gamma_i$ representing the coverage factors in the visible and infrared range, $\epsilon_e$ and $\epsilon_a$ representing the emissivity of Earth and the atmosphere, and $\sigma$ as the Stefan-Boltzmann constant.

ID:(85, 0)



Approximate Equations

Exercise

Using the approximations, we obtain for the equation that in a linear approximation is:

$-\kappa(\delta T_e-\delta T_b)-4\sigma\epsilon_e T_e^3\delta T_e+4\sigma\epsilon_b T_b^3\delta T_b-\delta a_e(1-\gamma_{\nu})I_s-(1-a_e)\delta\gamma_{\nu}I_s=0$



Similarly, for the second equation, we have:

$\kappa(\delta T_e-\delta T_b)+\sigma\epsilon_e T_e^4\delta\gamma_i+4\gamma_i\sigma\epsilon_e T_e^3\delta T_e+4\sigma\epsilon_t T_t^3\delta T_t-8\sigma\epsilon_b T_b^3\delta T_b=0$



And for the third equation:

$-2\sigma \epsilon_t T_t^3\delta T_t+\sigma\epsilon_b T_b^3\delta T_b-\gamma_{\nu}I_s\delta a_a+(1-a_a) I_s\delta\gamma_i=0$

These three equations form a system of linear equations to calculate the variations of the temperatures $\delta T_e$, $\delta T_b$, and $\delta T_t$ in terms of the variations of the albedos $\delta a_e$ and $\delta a_a$, and the coverage factors $\delta \gamma_{

u}$ and $\delta \gamma_i$.

ID:(87, 0)



Model simulator

Equation

The radiative balance equations allow us to calculate the temperatures on the Earth\'s surface $T_e$, in the lower atmosphere $T_b$, and at the top $T_t$. These equations are represented as follows:

Equation 1: The change in temperature at the Earth\'s surface is calculated using the equation:

$M_eC_e\displaystyle\frac{dT_e}{dt}=(1-a_e)(1-\gamma_v)I_s-\kappa(T_e-T_b)-\sigma\epsilon T_e^4+\sigma\epsilon T_b^4$



where $M_e$ is the mass of the Earth, $C_e$ is the heat capacity of the Earth, $a_e$ is the Earth\'s albedo, $\gamma_v$ is the fraction of visible radiation absorbed by the atmosphere, $I_s$ is the incident solar radiation, $\kappa$ is the thermal conductivity, $\sigma$ is the Stefan-Boltzmann constant, and $\epsilon$ is the emissivity of the Earth.

Equation 2: The change in temperature in the lower atmosphere is calculated using the equation:

$M_bC_b\displaystyle\frac{dT_b}{dt}=\kappa(T_e-T_b)+\gamma_i\sigma\epsilon T_e^4-2\sigma\epsilon T_b^4+\sigma\epsilon T_t^4=0$



where $M_b$ is the mass of the atmosphere, $C_b$ is the heat capacity of the atmosphere, and $\gamma_i$ is the fraction of infrared radiation absorbed by the atmosphere.

Equation 3: The change in temperature at the top of the atmosphere is calculated using the equation:

$M_tC_t\displaystyle\frac{dT_t}{dt}=(1-a_a)\gamma_vI_s+\sigma\epsilon T_b^4-2\sigma\epsilon T_t^4=0$

where $M_t$ is the mass of the upper atmosphere and $C_t$ is the heat capacity of the upper atmosphere.

These equations represent the balance between incident solar radiation, radiation emitted by the Earth, and radiation transferred between different layers of the Earth and the atmosphere. By solving these equations, we can obtain the temperatures in each of these layers.

ID:(6867, 0)



Numerical solution

Script

The system of equations can be solved analytically. If we evaluate the expressions for the parameters of the current Earth condition ($a_e = 0.152$, $a_a = 0.535$, $\gamma_{
u} = 0.421$, $\gamma_i=0.897$, $\kappa = 2.226 , \text{W/m}^2\text{K}^{-1}$, $\epsilon_e = \epsilon_b = \epsilon_t = 1$, $I_s = 342 , \text{W/m}^2$, $T_e = 14.8^\circ \text{C}$, $T_b = 1.79^\circ \text{C}$, and $T_t = -30.98^\circ \text{C}$), we would have:

$\delta T_e = 0.240\delta I_s - 97.978\delta\gamma_v+123.671\delta \gamma_i - 84.112\delta a_e - 22.827\delta a_a$



$\delta T_b = 0.193\delta I_s - 66.120\delta \gamma_v + 136.209\delta \gamma_i - 64.106\delta a_e - 25.142\delta a_a$



$\delta T_t = 0.172\delta I_s - 23.693\delta \gamma_v + 99.662\delta \gamma_i-46.905\delta a_e - 40.745\delta a_a$

ID:(7319, 0)



Calentamiento Global bajo distintos escenarios

Variable

Si se consideran los distintos escenarios B1, A1B y A1 se puede estudiar la probable evolución de la temperatura sobre la superficie del planeta.

Calentamiento Global bajo distintos escenarios

5.3-------7.67.57.68.27.67.6-8.78.78.711.38.79.3-7.17.17.015.17.010.421-------535657415351-16418118782136110-5255295502433282356.0-------11.212.110.011.010.09.0-23.116.012.316.511.711.2-30.313.14.328.95.213.81.1-------1.50.50.31.20.60.0-0.80.40.00.9-0.4-0.2--2.10.40.00.2-1.0-0.5310-------416421415424377384-630452500598359505-7352892748892365976.7------

-9.37.26.19.68.16.1-14.57.46.112.08.36.3-16.67.05.416.55.76.9
Escenarios1990A1FIA1BA1TA2B1B2
Población (1E+9)
2020
2050
2100
GDP (1E+12 1990US$/yr)
2020
2050
2100
CO2, fosil (GtC/yr)
2020
2050
2100
CO2, agro (GtC/yr)
2020
2050
2100
Metano, (MtCH4/yr)
2020
2050
2100
NO, (MtN/yr)
2020
2050
2100

ID:(7333, 0)



Calentamiento Global (ejemplo)

Audio

La siguiente gráfica muestra el calentamiento según zona geográfica:

Calentamiento Global (ejemplo)

ID:(7332, 0)



Balance equation solution

Storyboard

The equations for the temperature of the earth's surface, bottom and top of the atmosphere can be solved by disturbance techniques. This is assumed small variations in solar intensity, albedos and coverage factors and it is estimated how these affect the variation of these temperatures.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$I_s$
I_s
Intensidad de Radiación Solar
W/m^2
$I_{st}$
I_st
Nueva Intensidad de Radiación Solar
W/m^2
$T_{bt}$
T_bt
Nueva Temperatura atmosferica inferior
K
$T_{tt}$
T_tt
Nueva Temperatura atmosferica superior
K
$T_{et}$
T_et
Nueva Temperatura terrestre
K
$T_e$
T_e
Planet surface temperature
K
$T_b$
T_b
Temperatura atmosferica inferior ($T_b$)
K
$T_t$
T_t
Temperature in the upper atmosphere
K
$\delta a_a$
da_a
Variación Albedo atmosférico
-
$\delta a_e$
da_e
Variación Albedo terrestre
-
$\delta\gamma_i$
dgamma_i
Variación Cobertura infrarroja
-
$\delta\gamma_v$
dgamma_v
Variación Cobertura visible
-
$\delta I_s$
dI_s
Variación de Intensidad de Radiación Solar
W/m^2
$\delta T_b$
dT_b
Variación de la Temperatura atmosferica inferior ($\delta T_b)
K
$\delta T_t$
dT_t
Variación de la Temperatura atmosferica superior ($\delta T_t)
K
$\delta T_e$
dT_e
Variación de la Temperatura terrestre ($\delta T_e)
K

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

The new temperature $T_{et}$ is calculated by adding the initial temperature $T_e$ with the variation $\delta T_e$:

kyon

The new temperature $T_{bt}$ is calculated by adding the initial temperature $T_b$ with the variation $\delta T_b$:

kyon

The new temperature $T_{tt}$ is calculated by adding the initial temperature $T_t$ with the variation $\delta T_t$:

kyon

Since the parameters of the model vary little around their mean values, a Taylor expansion can be performed around the mean values. This yields linear equations that can be solved exactly.

The new intensity $I_{st}$ is calculated by adding the initial intensity $I_s$ with the variation $\delta I_s$:

kyon

The following diagram illustrates the main radiative fluxes (visible and infrared) in a simplified Earth model:

image

This diagram represents, in a simplified manner, the interaction of radiation on Earth. Visible radiation from the sun reaches the Earth\'s surface, where it can be reflected back into space, absorbed by the Earth\'s surface and converted into infrared radiation, or absorbed by the atmosphere. In turn, the Earth emits infrared radiation into space.

These radiative fluxes are fundamental to understanding the energy balance of our planet and the processes that regulate climate.

To simulate the future development of climate, four possible scenarios were assumed:

- A1: Rapid economic growth, energy consumption triples by 2100. Population increase to 9 billion by 2050 and subsequent slow decline.

- A2: Moderate economic growth, energy consumption increases gradually but triples by 2100. Continuous population increase to 15 billion by 2100.

- B1: Rapid economic growth, energy consumption decreases by 2100. Population increase to 9 billion by 2050 and subsequent slow decline.

- B2: Slower economic growth, energy consumption increases significantly but stabilizes by 2100. Slow population increase to 10 billion by 2100.

For each of these scenarios, the following are estimated:

- Energy consumption and the way it is generated.

- Production and type of food consumed.

Additionally, the generation of corresponding gases is estimated.

In the case of equilibrium, the following three radiative equilibrium equations hold:

$(1 - a_a)(1 - \gamma_{\nu})I_s - \kappa (T_e - T_b) - \sigma\epsilon_eT_e^4 + \sigma\epsilon_b T_b^4 = 0$



$\kappa(T_e - T_b) + \gamma_i\sigma\epsilon_e T_e^4 - 2\sigma\epsilon_bT_b^4 = 0$



$(1 - a_a)\gamma_{\nu} + \sigma\epsilon_b T_b^4 - 2\sigma\epsilon_t T_t^4 = 0$

where $T_e$ is the temperature of the Earth, $T_b$ is the temperature of the lower atmosphere, and $T_t$ is the temperature of the upper atmosphere. Additionally, we have the average solar radiation $I_s$, the albedos of the atmosphere and Earth denoted by $a_a$ and $a_e$ respectively, $\gamma_{

u}$ and $\gamma_i$ representing the coverage factors in the visible and infrared range, $\epsilon_e$ and $\epsilon_a$ representing the emissivity of Earth and the atmosphere, and $\sigma$ as the Stefan-Boltzmann constant.

Using the approximations, we obtain for the equation that in a linear approximation is:

$-\kappa(\delta T_e-\delta T_b)-4\sigma\epsilon_e T_e^3\delta T_e+4\sigma\epsilon_b T_b^3\delta T_b-\delta a_e(1-\gamma_{\nu})I_s-(1-a_e)\delta\gamma_{\nu}I_s=0$



Similarly, for the second equation, we have:

$\kappa(\delta T_e-\delta T_b)+\sigma\epsilon_e T_e^4\delta\gamma_i+4\gamma_i\sigma\epsilon_e T_e^3\delta T_e+4\sigma\epsilon_t T_t^3\delta T_t-8\sigma\epsilon_b T_b^3\delta T_b=0$



And for the third equation:

$-2\sigma \epsilon_t T_t^3\delta T_t+\sigma\epsilon_b T_b^3\delta T_b-\gamma_{\nu}I_s\delta a_a+(1-a_a) I_s\delta\gamma_i=0$

These three equations form a system of linear equations to calculate the variations of the temperatures $\delta T_e$, $\delta T_b$, and $\delta T_t$ in terms of the variations of the albedos $\delta a_e$ and $\delta a_a$, and the coverage factors $\delta \gamma_{

u}$ and $\delta \gamma_i$.

The radiative balance equations allow us to calculate the temperatures on the Earth\'s surface $T_e$, in the lower atmosphere $T_b$, and at the top $T_t$. These equations are represented as follows:

Equation 1: The change in temperature at the Earth\'s surface is calculated using the equation:

$M_eC_e\displaystyle\frac{dT_e}{dt}=(1-a_e)(1-\gamma_v)I_s-\kappa(T_e-T_b)-\sigma\epsilon T_e^4+\sigma\epsilon T_b^4$



where $M_e$ is the mass of the Earth, $C_e$ is the heat capacity of the Earth, $a_e$ is the Earth\'s albedo, $\gamma_v$ is the fraction of visible radiation absorbed by the atmosphere, $I_s$ is the incident solar radiation, $\kappa$ is the thermal conductivity, $\sigma$ is the Stefan-Boltzmann constant, and $\epsilon$ is the emissivity of the Earth.

Equation 2: The change in temperature in the lower atmosphere is calculated using the equation:

$M_bC_b\displaystyle\frac{dT_b}{dt}=\kappa(T_e-T_b)+\gamma_i\sigma\epsilon T_e^4-2\sigma\epsilon T_b^4+\sigma\epsilon T_t^4=0$



where $M_b$ is the mass of the atmosphere, $C_b$ is the heat capacity of the atmosphere, and $\gamma_i$ is the fraction of infrared radiation absorbed by the atmosphere.

Equation 3: The change in temperature at the top of the atmosphere is calculated using the equation:

$M_tC_t\displaystyle\frac{dT_t}{dt}=(1-a_a)\gamma_vI_s+\sigma\epsilon T_b^4-2\sigma\epsilon T_t^4=0$

where $M_t$ is the mass of the upper atmosphere and $C_t$ is the heat capacity of the upper atmosphere.

These equations represent the balance between incident solar radiation, radiation emitted by the Earth, and radiation transferred between different layers of the Earth and the atmosphere. By solving these equations, we can obtain the temperatures in each of these layers.

The system of equations can be solved analytically. If we evaluate the expressions for the parameters of the current Earth condition ($a_e = 0.152$, $a_a = 0.535$, $\gamma_{
u} = 0.421$, $\gamma_i=0.897$, $\kappa = 2.226 , \text{W/m}^2\text{K}^{-1}$, $\epsilon_e = \epsilon_b = \epsilon_t = 1$, $I_s = 342 , \text{W/m}^2$, $T_e = 14.8^\circ \text{C}$, $T_b = 1.79^\circ \text{C}$, and $T_t = -30.98^\circ \text{C}$), we would have:

equation=7440

equation=7441

equation=7442

La temperatura terrestre se puede estimar mediante:

$\delta T_e = 0.240\delta I_s - 97.978\delta\gamma_{

u}+123.671\delta \gamma_i - 84.112\delta a_e - 22.827\delta a_a$

$\delta T_b = 0.193\delta I_s - 66.120\delta \gamma_{

u} + 136.209\delta \gamma_i - 64.106\delta a_e - 25.142\delta a_a$

$\delta T_t = 0.172\delta I_s - 23.693\delta \gamma_{

u} + 99.662\delta \gamma_i-46.905\delta a_e - 40.745\delta a_a$

donde se asumieron los valores

Par metros | Valor

-------------------|:---------:

$a_e$ | $0.152$

$a_a$ | $0.535$

$\gamma_{

u}$ | $0.421$

$\gamma_i$ | $0.897$

$\kappa$ | $2.226W/m^2K$

$\epsilon_e$ | $1$

$\epsilon_b$ | $1$

$\epsilon_t$ | $1$

$I_s$ | $342W/m^2$

$T_e$ | $14.8^{\circ}C$

$T_b$ | $1.79^{\circ}C$

$T_t$ | $-30.98^{\circ}C$

La temperatura terrestre se puede estimar mediante:

$\delta T_e = 0.240\delta I_s - 97.978\delta\gamma_{

u}+123.671\delta \gamma_i - 84.112\delta a_e - 22.827\delta a_a$

$\delta T_b = 0.193\delta I_s - 66.120\delta \gamma_{

u} + 136.209\delta \gamma_i - 64.106\delta a_e - 25.142\delta a_a$

$\delta T_t = 0.172\delta I_s - 23.693\delta \gamma_{

u} + 99.662\delta \gamma_i-46.905\delta a_e - 40.745\delta a_a$

donde se asumieron los valores

Par metros | Valor

-------------------|:---------:

$a_e$ | $0.152$

$a_a$ | $0.535$

$\gamma_{

u}$ | $0.421$

$\gamma_i$ | $0.897$

$\kappa$ | $2.226W/m^2K$

$\epsilon_e$ | $1$

$\epsilon_b$ | $1$

$\epsilon_t$ | $1$

$I_s$ | $342W/m^2$

$T_e$ | $14.8^{\circ}C$

$T_b$ | $1.79^{\circ}C$

$T_t$ | $-30.98^{\circ}C$

La temperatura terrestre se puede estimar mediante:

$\delta T_e = 0.240\delta I_s - 97.978\delta\gamma_{

u}+123.671\delta \gamma_i - 84.112\delta a_e - 22.827\delta a_a$

$\delta T_b = 0.193\delta I_s - 66.120\delta \gamma_{

u} + 136.209\delta \gamma_i - 64.106\delta a_e - 25.142\delta a_a$

$\delta T_t = 0.172\delta I_s - 23.693\delta \gamma_{

u} + 99.662\delta \gamma_i-46.905\delta a_e - 40.745\delta a_a$

donde se asumieron los valores

Par metros | Valor

-------------------|:---------:

$a_e$ | $0.152$

$a_a$ | $0.535$

$\gamma_{

u}$ | $0.421$

$\gamma_i$ | $0.897$

$\kappa$ | $2.226W/m^2K$

$\epsilon_e$ | $1$

$\epsilon_b$ | $1$

$\epsilon_t$ | $1$

$I_s$ | $342W/m^2$

$T_e$ | $14.8^{\circ}C$

$T_b$ | $1.79^{\circ}C$

$T_t$ | $-30.98^{\circ}C$

Si se consideran los distintos escenarios B1, A1B y A1 se puede estudiar la probable evoluci n de la temperatura sobre la superficie del planeta.

image

5.3-------7.67.57.68.27.67.6-8.78.78.711.38.79.3-7.17.17.015.17.010.421-------535657415351-16418118782136110-5255295502433282356.0-------11.212.110.011.010.09.0-23.116.012.316.511.711.2-30.313.14.328.95.213.81.1-------1.50.50.31.20.60.0-0.80.40.00.9-0.4-0.2--2.10.40.00.2-1.0-0.5310-------416421415424377384-630452500598359505-7352892748892365976.7------

-9.37.26.19.68.16.1-14.57.46.112.08.36.3-16.67.05.416.55.76.9
Escenarios1990A1FIA1BA1TA2B1B2
Poblaci n (1E+9)
2020
2050
2100
GDP (1E+12 1990US$/yr)
2020
2050
2100
CO2, fosil (GtC/yr)
2020
2050
2100
CO2, agro (GtC/yr)
2020
2050
2100
Metano, (MtCH4/yr)
2020
2050
2100
NO, (MtN/yr)
2020
2050
2100

La siguiente gr fica muestra el calentamiento seg n zona geogr fica:

image


>Model

ID:(575, 0)