Ocupación de estados

Image

Si se compara la ocupación de estados se obtiene que

- la distribución de Fermi-Direc (FD) disminuye con la energía por temperatura
- la distribución de Bose Einstein (BE) aumenta con la energía por temperatura
- la distribución de Maxwell-Boltzmann (MB) muestra un comportamiento intermedio
- ambas distribuciones de los gases cuanticos (FD, BE) convergen a alta energía por temperatura a la distribución de Maxwell Boltzmann

ID:(13508, 0)



Potencial químico en las tres distribuciones

Image

En el caso del potencial químico se observa

- en la distribución de Fermi-Direc (FD) que decrece al aumentar la temperatura volviéndose negativo
- en la distribución de Bose Einstein (BE) que presenta el condensado (en que es cero) y de igual forma decrece con el aumento de la temperatura
- en la distribución de Maxwell-Boltzmann (MB) muestra un comportamiento intermedio
- ambas distribuciones de los gases cuanticos (FD, BE) convergen a alta energía por temperatura altas a la distribución de Maxwell Boltzmann

ID:(13509, 0)



Límites de Estadiísticas de Gases Cuanticos

Description

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\alpha$
alpha
Alpha
-
$\beta$
beta
Beta
1/J
$\epsilon_r$
epsilon_r
Energía de la partícula en el estado $r$
J
$\epsilon_r$
epsilon_r
Energía del fermion en el estado $r$
J
$\alpha$
alpha
Factor alpha
-
$\beta$
beta
Factor beta
1/J
$Z_{BE/FD}$
Z_BEFD
Función partición de Bose-Einstein/Fermi-Dirac
-
$Z_{MB}$
Z_MB
Función partición de Maxwell-Boltzmann
-
$N$
N
Numero de partículas
-
$n_r$
n_r
Numero de partículas en el estado $r$
-

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

Si se compara la ocupaci n de estados se obtiene que

- la distribuci n de Fermi-Direc (FD) disminuye con la energ a por temperatura
- la distribuci n de Bose Einstein (BE) aumenta con la energ a por temperatura
- la distribuci n de Maxwell-Boltzmann (MB) muestra un comportamiento intermedio
- ambas distribuciones de los gases cuanticos (FD, BE) convergen a alta energ a por temperatura a la distribuci n de Maxwell Boltzmann

(ID 13508)

En el caso del potencial qu mico se observa

- en la distribuci n de Fermi-Direc (FD) que decrece al aumentar la temperatura volvi ndose negativo
- en la distribuci n de Bose Einstein (BE) que presenta el condensado (en que es cero) y de igual forma decrece con el aumento de la temperatura
- en la distribuci n de Maxwell-Boltzmann (MB) muestra un comportamiento intermedio
- ambas distribuciones de los gases cuanticos (FD, BE) convergen a alta energ a por temperatura altas a la distribuci n de Maxwell Boltzmann

(ID 13509)


ID:(514, 0)