Utilizador:


Torque

Storyboard

>Modelo

ID:(599, 0)



Torque com momento de inércia constante

Modelo

Variáveis

Símbolo
Texto
Variáve
Valor
Unidades
Calcular
Valeur MKS
Unidades MKS
$\alpha_0$
alpha_0
Aceleração angular constante
rad/s^2
$a$
a
Aceleração instantânea
m/s^2
$\theta$
theta
Ângulo
rad
$\theta_0$
theta_0
ângulo inicial
rad
$\Delta\theta$
Dtheta
Diferença de ângulos
rad
$\Delta v$
Dv
Diferença de velocidade
m/s
$\Delta\omega$
Domega
Diferença de velocidades angulares
rad/s
$\Delta s$
Ds
Distância percorrida em um tempo
m
$F$
F
Força
N
$p$
p
Momento
kg m/s
$L$
L
Momento angular
kg m^2/s
$L_0$
L_0
Momento angular inicial
kg m^2/s
$I$
I
Momento de inércia
kg m^2
$p_0$
p_0
Momento inicial
kg m/s
$m$
m
Ponto de massa
kg
$s$
s
Posição
m
$r$
r
Rádio
m
$t$
t
Tempo
s
$\Delta t$
Dt
Tempo decorrido
s
$t_0$
t_0
Tempo inicial
s
$T$
T
Torque
N m
$\Delta p$
Dp
Variação de momento
kg m/s
$\Delta L$
DL
Variação do momento angular
kg m^2/s
$s_0$
s_0
Velocidade
m
$v$
v
Velocidade
m/s
$\omega$
omega
Velocidade angular
rad/s
$\omega_0$
omega_0
Velocidade angular inicial
rad/s
$v_0$
v_0
Velocidade inicial
m/s

Cálculos


Primeiro, selecione a equação:   para ,  depois, selecione a variável:   para 

Símbolo
Equação
Resolvido
Traduzido

Cálculos

Símbolo
Equação
Resolvido
Traduzido

 Variáve   Dado   Calcular   Objetivo :   Equação   A ser usado



Equações

Como la velocidade média ($\bar{v}$) com la distância percorrida em um tempo ($\Delta s$) e o tempo decorrido ($\Delta t$), igual a

$ \bar{v} \equiv\displaystyle\frac{ \Delta s }{ \Delta t }$



e com la distância percorrida em um tempo ($\Delta s$) expresso como arco de um c rculo, e o rádio ($r$) e la variação de ângulo ($\Delta\theta$) s o

$ \Delta s=r \Delta\theta $



e a defini o de la velocidade angular média ($\bar{\omega}$)

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



ent o,

$v=\displaystyle\frac{\Delta s}{\Delta t}=r\displaystyle\frac{\Delta\theta}{\Delta t}=r\omega$



Como a rela o geral, pode ser aplicada para valores instant neos, resultando em

$ v = r \omega $

(ID 3233)

Como la velocidade média ($\bar{v}$) com la distância percorrida em um tempo ($\Delta s$) e o tempo decorrido ($\Delta t$), igual a

$ \bar{v} \equiv\displaystyle\frac{ \Delta s }{ \Delta t }$



e com la distância percorrida em um tempo ($\Delta s$) expresso como arco de um c rculo, e o rádio ($r$) e la variação de ângulo ($\Delta\theta$) s o

$ \Delta s=r \Delta\theta $



e a defini o de la velocidade angular média ($\bar{\omega}$)

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



ent o,

$v=\displaystyle\frac{\Delta s}{\Delta t}=r\displaystyle\frac{\Delta\theta}{\Delta t}=r\omega$



Como a rela o geral, pode ser aplicada para valores instant neos, resultando em

$ v = r \omega $

(ID 3233)

Como la velocidade média ($\bar{v}$) com la distância percorrida em um tempo ($\Delta s$) e o tempo decorrido ($\Delta t$), igual a

$ \bar{v} \equiv\displaystyle\frac{ \Delta s }{ \Delta t }$



e com la distância percorrida em um tempo ($\Delta s$) expresso como arco de um c rculo, e o rádio ($r$) e la variação de ângulo ($\Delta\theta$) s o

$ \Delta s=r \Delta\theta $



e a defini o de la velocidade angular média ($\bar{\omega}$)

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



ent o,

$v=\displaystyle\frac{\Delta s}{\Delta t}=r\displaystyle\frac{\Delta\theta}{\Delta t}=r\omega$



Como a rela o geral, pode ser aplicada para valores instant neos, resultando em

$ v = r \omega $

(ID 3233)

A defini o da acelera o angular m dia baseada no ngulo percorrido

$ \Delta\omega = \omega_2 - \omega_1 $



e no tempo decorrido

$ \Delta t \equiv t - t_0 $



A rela o entre os dois definida como a acelera o angular m dia

$ \bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$

dentro desse intervalo de tempo.

(ID 3234)

Dado que la aceleração média ($\bar{a}$) igual a la diferença de velocidade ($\Delta v$) e o tempo decorrido ($\Delta t$) conforme

$ \bar{a} \equiv\displaystyle\frac{ \Delta v }{ \Delta t }$



e la aceleração angular média ($\bar{\alpha}$) igual a la diferença de velocidades angulares ($\Delta\omega$) e o tempo decorrido ($\Delta t$) conforme

$ \alpha_0 \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$



deduz-se que

$\bar{a}=\displaystyle\frac{\Delta v}{\Delta t}=r\displaystyle\frac{\Delta\omega}{\Delta t}=\bar{\alpha}$



Assumindo que la aceleração angular média ($\bar{\alpha}$) igual a la aceleração angular constante ($\alpha_0$)

$ \bar{\alpha} = \alpha_0 $



e supondo que la aceleração média ($\bar{a}$) igual a la aceleração constante ($a_0$)

$ a_0 = \bar{a} $



obt m-se a seguinte equa o:

$ a = r \alpha $

(ID 3236)

Se assumirmos que la aceleração angular média ($\bar{\alpha}$) constante, equivalente a la aceleração angular constante ($\alpha_0$), ent o a seguinte equa o se aplica:

$ \bar{\alpha} = \alpha_0 $



Portanto, considerando la diferença de velocidades angulares ($\Delta\omega$) junto com la velocidade angular ($\omega$) e la velocidade angular inicial ($\omega_0$):

$ \Delta\omega = \omega_2 - \omega_1 $



e o tempo decorrido ($\Delta t$) em rela o a o tempo ($t$) e o tempo inicial ($t_0$):

$ \Delta t \equiv t - t_0 $



a equa o para la aceleração angular média ($\bar{\alpha}$):

$ \alpha_0 \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$



pode ser expressa como:

$\alpha_0 = \alpha = \displaystyle\frac{\Delta \omega}{\Delta t} = \displaystyle\frac{\omega - \omega_0}{t - t_0}$



Resolvendo isso, obtemos:

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$

(ID 3237)

Como o momento igual a

$ L = I \omega $



segue-se que no caso em que o momento de in rcia n o muda com o tempo,

$T=\displaystyle\frac{dL}{dt}=\displaystyle\frac{d}{dt}(I\omega) = I\displaystyle\frac{d\omega}{dt} = I\alpha$



o que implica que

$ T = I \alpha $

.

(ID 3253)

A relação entre o momento angular ($L$) e o momento ($p$) é expressa como:

$ L = r p $



Utilizando o rádio ($r$), esta expressão pode ser igualada com o momento de inércia ($I$) e la velocidade angular ($\omega$) da seguinte forma:

$ L = I \omega $



Substituindo depois por la massa inercial ($m_i$) e la velocidade ($v$):

$ p = m_i v $



e

$ v = r \omega $



conclui-se que o momento de inércia de uma partícula que gira em uma órbita é:

$ I = m_i r ^2$

(ID 3602)

No caso de la aceleração angular constante ($\alpha_0$), la velocidade angular ($\omega$) como fun o de o tempo ($t$) segue uma rela o linear com o tempo inicial ($t_0$) e la velocidade angular inicial ($\omega_0$) na forma:

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$



Dado que o deslocamento angular igual rea sob a curva de velocidade angular-tempo, neste caso, pode-se adicionar as contribui es do ret ngulo:

$\omega_0(t-t_0)$



e do tri ngulo:

$\displaystyle\frac{1}{2}\alpha_0(t-t_0)^2$



Isso nos leva express o para o ângulo ($\theta$) e o ângulo inicial ($\theta_0$):

$ \theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2$

(ID 3682)

Se partirmos de la velocidade ($s_0$) e quisermos calcular la distância percorrida em um tempo ($\Delta s$), é necessário definir um valor para la posição ($s$).

Em um sistema unidimensional, la distância percorrida em um tempo ($\Delta s$) é obtido simplesmente subtraindo la velocidade ($s_0$) de la posição ($s$), resultando em:

$ \Delta s = s - s_0 $

(ID 4352)

Se resolvermos o tempo na equa o de la velocidade angular ($\omega$) que inclui as vari veis la velocidade angular inicial ($\omega_0$), o tempo ($t$), o tempo inicial ($t_0$) e la aceleração angular constante ($\alpha_0$):

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$



obtemos a seguinte express o para o tempo:

$t - t_0 = \displaystyle\frac{\omega - \omega_0}{\alpha_0}$



Esta solu o pode ser substitu da na equa o para calcular o ângulo ($\theta$) usando o ângulo inicial ($\theta_0$) da seguinte forma:

$ \theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2$



o que resulta na seguinte equa o:

$ \theta = \theta_0 +\displaystyle\frac{ \omega ^2- \omega_0 ^2}{2 \alpha_0 }$

(ID 4386)

Dado que o momento ($p$) se define con la massa inercial ($m_i$) y la velocidade ($v$),

$ p = m_i v $



Si la massa inercial ($m_i$) igual a la massa inicial ($m_0$), ent o podemos derivar o momento em rela o ao tempo e obter la força com massa constante ($F$):

$F=\displaystyle\frac{d}{dt}p=m_i\displaystyle\frac{d}{dt}v=m_ia$



Portanto, chegamos conclus o de que

$ F = m_i a $

(ID 10975)


Exemplos


(ID 15527)


(ID 15530)


ID:(599, 0)