Benützer:


Mit konstanter Winkelgeschwindigkeit abfangen

Storyboard

Objekte können sich schneiden, wenn sie im gleichen Moment im Winkel übereinstimmen. Um dies zu erreichen, müssen sie sich von ihren jeweiligen Anfangswinkeln mit Winkelgeschwindigkeiten bewegen, die es ihnen ermöglichen, sich am Ende der Reise im Winkel und zur gleichen Zeit zu treffen.

>Modell

ID:(1450, 0)



Mit konstanter Winkelgeschwindigkeit abfangen

Beschreibung

Objekte können sich schneiden, wenn sie im gleichen Moment im Winkel übereinstimmen. Um dies zu erreichen, müssen sie sich von ihren jeweiligen Anfangswinkeln mit Winkelgeschwindigkeiten bewegen, die es ihnen ermöglichen, sich am Ende der Reise im Winkel und zur gleichen Zeit zu treffen.

Variablen

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten
$\theta_1$
theta_1
Anfangswinkel des ersten Körpers
rad
$\theta_2$
theta_2
Anfangswinkel des zweiten Körpers
rad
$t_1$
t_1
Anfangszeit des ersten Objekts
s
$t_2$
t_2
Anfangszeit des zweiten Objekts
s
$\Delta\theta$
Dtheta
Differenz von Winkel
rad
$v_1$
v_1
Geschwindigkeit des ersten Objekts vor der Kollision
m/s
$v_2$
v_2
Geschwindigkeit des zweiten Objekts vor der Kollision
m/s
$\theta$
theta
Kreuzungswinkel
rad
$t$
t
Kreuzungszeit
s
$r$
r
Radius
m
$\Delta t_1$
Dt_1
Reisezeit des ersten Objekts
s
$\Delta t_2$
Dt_2
Reisezeit des zweiten Objekts
s
$\Delta\theta_1$
Dtheta_1
Vom ersten Körper zurückgelegter Winkel
rad
$\Delta\theta_2$
Dtheta_2
Vom zweiten Körper zurückgelegter Winkel
rad
$\omega_1$
omega_1
Winkelgeschwindigkeit des Körpers 1
rad/s
$\omega_2$
omega_2
Winkelgeschwindigkeit des Körpers 2
rad/s

Berechnungen


Zuerst die Gleichung auswählen:   zu ,  dann die Variable auswählen:   zu 

Symbol
Gleichung
Gelöst
Übersetzt

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

 Variable   Gegeben   Berechnen   Ziel :   Gleichung   Zu verwenden



Gleichungen

Im Fall, dass die Anfängliche Winkelgeschwindigkeit ($\omega_0$) gleich die Mittlere Winkelgeschwindigkeit ($\bar{\omega}$) ist,

$ \bar{\omega} = \omega_0 $



Deshalb erhalten wir mit die Differenz von Winkel ($\Delta\theta$), welches gleich der Winkel ($\theta$) geteilt durch der Anfangswinkel ($\theta_0$) ist:

$ \Delta\theta = \theta_2 - \theta_1 $



Und mit der Abgelaufene Zeit ($\Delta t$), welches gleich der Zeit ($t$) geteilt durch der Startzeit ($t_0$) ist:

$ \Delta t \equiv t - t_0 $



Wir k nnen die Gleichung f r die Mittlere Winkelgeschwindigkeit ($\bar{\omega}$) umschreiben als:

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



Dies kann ausgedr ckt werden als:

$\omega_0 = \omega = \displaystyle\frac{\Delta\theta}{\Delta t} = \displaystyle\frac{\theta - \theta_0}{t - t_0}$



Bei der L sung erhalten wir:

$ \theta = \theta_0 + \omega_0 ( t - t_0 )$

(ID 1023)

Im Fall, dass die Anfängliche Winkelgeschwindigkeit ($\omega_0$) gleich die Mittlere Winkelgeschwindigkeit ($\bar{\omega}$) ist,

$ \bar{\omega} = \omega_0 $



Deshalb erhalten wir mit die Differenz von Winkel ($\Delta\theta$), welches gleich der Winkel ($\theta$) geteilt durch der Anfangswinkel ($\theta_0$) ist:

$ \Delta\theta = \theta_2 - \theta_1 $



Und mit der Abgelaufene Zeit ($\Delta t$), welches gleich der Zeit ($t$) geteilt durch der Startzeit ($t_0$) ist:

$ \Delta t \equiv t - t_0 $



Wir k nnen die Gleichung f r die Mittlere Winkelgeschwindigkeit ($\bar{\omega}$) umschreiben als:

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



Dies kann ausgedr ckt werden als:

$\omega_0 = \omega = \displaystyle\frac{\Delta\theta}{\Delta t} = \displaystyle\frac{\theta - \theta_0}{t - t_0}$



Bei der L sung erhalten wir:

$ \theta = \theta_0 + \omega_0 ( t - t_0 )$

(ID 1023)

Da die Mittlere Geschwindigkeit ($\bar{v}$) mit die Zurückgelegte Strecke in einer Zeit ($\Delta s$) und der Abgelaufene Zeit ($\Delta t$) gleich ist, was ist

$ \bar{v} \equiv\displaystyle\frac{ \Delta s }{ \Delta t }$



und mit die Zurückgelegte Strecke in einer Zeit ($\Delta s$) als Bogen eines Kreises und der Radius ($r$) und die Winkelvariation ($\Delta\theta$) ist

$ \Delta s=r \Delta\theta $



und die Definition von die Mittlere Winkelgeschwindigkeit ($\bar{\omega}$) ist

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



dann ist

$v=\displaystyle\frac{\Delta s}{\Delta t}=r\displaystyle\frac{\Delta\theta}{\Delta t}=r\omega$



Da die Beziehung allgemein ist, kann sie f r momentane Werte angewendet werden, was zu

$ v = r \omega $

f hrt.

(ID 3233)

Da die Mittlere Geschwindigkeit ($\bar{v}$) mit die Zurückgelegte Strecke in einer Zeit ($\Delta s$) und der Abgelaufene Zeit ($\Delta t$) gleich ist, was ist

$ \bar{v} \equiv\displaystyle\frac{ \Delta s }{ \Delta t }$



und mit die Zurückgelegte Strecke in einer Zeit ($\Delta s$) als Bogen eines Kreises und der Radius ($r$) und die Winkelvariation ($\Delta\theta$) ist

$ \Delta s=r \Delta\theta $



und die Definition von die Mittlere Winkelgeschwindigkeit ($\bar{\omega}$) ist

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



dann ist

$v=\displaystyle\frac{\Delta s}{\Delta t}=r\displaystyle\frac{\Delta\theta}{\Delta t}=r\omega$



Da die Beziehung allgemein ist, kann sie f r momentane Werte angewendet werden, was zu

$ v = r \omega $

f hrt.

(ID 3233)

Die Definition von die Mittlere Winkelgeschwindigkeit ($\bar{\omega}$) wird als die Winkelvariation ($\Delta\theta$) betrachtet,

$ \Delta\theta = \theta_2 - \theta_1 $



und der Abgelaufene Zeit ($\Delta t$),

$ \Delta t \equiv t - t_0 $



Die Beziehung zwischen beiden wird als die Mittlere Winkelgeschwindigkeit ($\bar{\omega}$) definiert:

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$

(ID 3679)

Die Definition von die Mittlere Winkelgeschwindigkeit ($\bar{\omega}$) wird als die Winkelvariation ($\Delta\theta$) betrachtet,

$ \Delta\theta = \theta_2 - \theta_1 $



und der Abgelaufene Zeit ($\Delta t$),

$ \Delta t \equiv t - t_0 $



Die Beziehung zwischen beiden wird als die Mittlere Winkelgeschwindigkeit ($\bar{\omega}$) definiert:

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$

(ID 3679)


Beispiele


(ID 15411)

Im Falle einer Kreuzung bewegen sich zwei K rper so, dass sie sich zur Zeit ein Kreuzungszeit ($t$) an ERROR:10307,0 treffen werden.

Um dies zu erreichen, beginnt jeder K rper:

• Seine Verschiebung bei der Anfangszeit des ersten Objekts ($t_1$) bei der Anfangswinkel des ersten Körpers ($\theta_1$) mit eine Winkelgeschwindigkeit des Körpers 1 ($\omega_1$).
• Seine Verschiebung bei der Anfangszeit des zweiten Objekts ($t_2$) bei der Anfangswinkel des zweiten Körpers ($\theta_2$) mit eine Winkelgeschwindigkeit des Körpers 2 ($\omega_2$).

Diese Bedingungen m ssen erf llt sein, um die Kreuzung zu erreichen.

Die Winkel-Zeit-Diagramme k nnen dann wie folgt berlagert werden:

(ID 15517)

Im Falle einer Kreuzung oder Kollision zwischen zwei Objekten ist es blich, dass die Winkelgeschwindigkeit des Körpers 1 ($\omega_1$) und die Winkelgeschwindigkeit des Körpers 2 ($\omega_2$) so konfiguriert sind, dass sie zusammenfallen.

Das bedeutet, dass der Vom ersten Körper zurückgelegter Winkel ($\Delta\theta_1$) und die Reisezeit des ersten Objekts ($\Delta t_1$) zu eine Winkelgeschwindigkeit des Körpers 1 ($\omega_1$) f hren m ssen,

$ \omega_1 \equiv\displaystyle\frac{ \Delta\theta_1 }{ \Delta t_1 }$



so dass mit der Vom zweiten Körper zurückgelegter Winkel ($\Delta\theta_2$) und die Reisezeit des zweiten Objekts ($\Delta t_2$) Eine Winkelgeschwindigkeit des Körpers 2 ($\omega_2$) erreicht wird,

$ \omega_2 \equiv\displaystyle\frac{ \Delta\theta_2 }{ \Delta t_2 }$



damit sie schlie lich in Zeit und Raum (Position) bereinstimmen:

(ID 15516)

Im Fall einer Bewegung, bei der sich zwei Objekte schneiden, wie zum Beispiel die Kreuzungswinkel ($\theta$) und der Kreuzungszeit ($t$), ist dies f r beide blich. Daher, wenn f r das erste Objekt der Anfangszeit des ersten Objekts ($t_1$) und der Anfangswinkel des ersten Körpers ($\theta_1$) mit die Winkelgeschwindigkeit des Körpers 1 ($\omega_1$) erf llt sind:

$ \theta = \theta_1 + \omega_1 ( t - t_1 )$



und f r das zweite Objekt der Anfangszeit des zweiten Objekts ($t_2$) und der Anfangswinkel des zweiten Körpers ($\theta_2$) mit die Winkelgeschwindigkeit des Körpers 2 ($\omega_2$) erf llt sind:

$ \theta = \theta_2 + \omega_2 ( t - t_2 )$



was wie folgt dargestellt wird:

(ID 15518)


(ID 15422)


ID:(1450, 0)