Magnetic induction

Storyboard

An inductance is an element that by varying the current flowing through it generates a potential that opposes the same current flow. It operates as a system that dampens the current flowing through it. It works by means of a coil in which the current generates a magnetic field that in turn generates the potential that opposes the current.

>Model

ID:(1392, 0)



Magnetic Field around a Wire

Image

>Top



ID:(1933, 0)



Calculation of the electric potential

Equation

>Top, >Model


Para calcular el potencial eléctrico se debe integrar a lo largo de un camino que se puede elegir libremente con

$ \varphi(P2) - \varphi(P1) = -\displaystyle\int_C \vec{E}\cdot d\vec{s} $



Por ello se puede calcular el potencial eléctrico en un punto particular (ejemplo el P_2) pero se debe siempre establecer un potencial de referencia (en este caso P_1) que podemos denominar \varphi y que corresponde a un lugar físico.

Por ello con es

$ \varphi =\varphi_0 - \displaystyle\int_C \vec{E}\cdot d\vec{s}$

ID:(3844, 0)



Induction current by magnetic field

Equation

>Top, >Model


If the conductor moves through a magnetic field \vec{B} or the magnetic field with respect to the conductor with a speed \vec{v} a force is generated according to Lorentz's Law equal to

$ F = q v B \sin \theta $



where it was assumed that the charge is q and the velocity is orthogonal to the magnetic field.

The force can be described by an induced electric field \vec{E} and this can be associated with a potential difference \Delta V divided by the length of the l of the driver

F=qE=q\displaystyle\frac{\Delta V}{l}

With this the induced potential is equal to

$ \Delta V = l v B $

ID:(3220, 0)