Parallel Capacities

Storyboard

In the case of parallel capacitances the potential difference applied is equal for all the capacited. As the potential differences are equal to the load divided by the capacitance, the charge of each capacitance is equal to the product of the potential difference by the capacitance . Being the total load equal to the sum of the loads in each capacitance, it is obtained that the total training is equal to the sum of the individual trainings.

>Model

ID:(1394, 0)



Capacity addition in parallel

Image

>Top


El símbolo del capacitor o condensador es el de dos placas paralelas. Si se suman en paralelo se les dibuja uno al lado del otro y conectados al mismo punto:

ID:(1931, 0)



Sum of capacities in parallel

Equation

>Top, >Model


Al conectar capacidades en paralelo caída de potencial \Delta\varphi es para todas igual, sin embargo las cargas Q_i que se forman en cada condensador depende de la capacidad C_i. Si Q es la carga total, la suma de las cargas individuales sera\\n\\n

$Q=\displaystyle\sum_i Q_i$

\\n\\nSi ahora se aplica la relación de las capacidades para cada una de estas se tendrá para potenciales iguales que\\n\\n

$\Delta\varphi=\displaystyle\frac{Q_i}{C_i}$

\\n\\nCon ello la carga total es igual a\\n\\n

$Q=\displaystyle\sum_i C_i\Delta\varphi$



por lo que la regla de suma de capacidades en paralelo será con

$ C_p =\displaystyle\sum_ i C_i $

ID:(3218, 0)



Capacity Sum of Series (2)

Equation

>Top, >Model


The sum of two parallel capacity gives

$ C_{p2} = C_{1p2} + C_{2p2} $

ID:(3866, 0)



Capacity Sum of Series (3)

Equation

>Top, >Model


The sum of three parallel capacity gives

$ C_p = C_1 + C_2 + C_3 $

ID:(3867, 0)



Capacity Sum of Series (4)

Equation

>Top, >Model


The sum of four parallel capacity gives

$ C_p = C_1 + C_2 + C_3 + C_4 $

ID:(3868, 0)



0
Video

Video: Parallel capacitances