Processing math: 100%
User: No user logged in.


Sound Intensity

Storyboard

Sound intensity is the energy by area and time that helps to understand how the sound wave is distributed spatially.

>Model

ID:(1588, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15459, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
I_{ref}
I_ref
Reference intensity, air
W/m^2
p_{ref}
p_ref
Reference pressure
Pa
P
P
Sound Power
W

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
e
e
Energy density
J/m^3
\rho
rho
Mean density
kg/m^3
u
u
Molecule speed
m/s
L
L
Noise level, air
dB
S
S
Section of Volume DV
m^2
I
I
Sound Intensity
W/m^2
p
p
Sound pressure
Pa
c
c
Speed of sound
m/s

Calculations


First, select the equation: to , then, select the variable: to
e = rho * u ^2/2 I = c * e I = P / S I = p ^2/(2* rho * c ) I = rho * c * u ^2/2 I_ref = p_ref ^2/(2* rho * c ) L = 10* log10( I / I_ref )erhouLI_refp_refSIPpc

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
e = rho * u ^2/2 I = c * e I = P / S I = p ^2/(2* rho * c ) I = rho * c * u ^2/2 I_ref = p_ref ^2/(2* rho * c ) L = 10* log10( I / I_ref )erhouLI_refp_refSIPpc




Equations

#
Equation

e =\displaystyle\frac{1}{2} \rho u ^2

e = rho * u ^2/2


I = c e

I = c * e


I =\displaystyle\frac{ P }{ S }

I = P / S


I =\displaystyle\frac{ p ^2}{2 \rho c }

I = p ^2/(2* rho * c )


I =\displaystyle\frac{1}{2} \rho c u ^2

I = rho * c * u ^2/2


I_{ref} =\displaystyle\frac{ p_{ref} ^2}{2 \rho c }

I_ref = p_ref ^2/(2* rho * c )


L = 10 log_{10}\left(\displaystyle\frac{ I }{ I_{ref} }\right)

L = 10* log10( I / I_ref )

ID:(15454, 0)



Acoustic intensity

Equation

>Top, >Model


Intensity is the power (energy per unit time, in joules per second or watts) per area emanating from a source.

Therefore, it is defined as the sound Intensity (I), the ratio between the sound Power (P) and the section of Volume DV (S), so it is:

I =\displaystyle\frac{ P }{ S }

S
Section of Volume DV
m^2
5081
I
Sound Intensity
W/m^2
5091
W
Sound Power
W
5090
I = P / S L = 10* log10( I / I_ref ) e = rho * u ^2/2 I = rho * c * u ^2/2 I = p ^2/(2* rho * c ) I = c * e I_ref = p_ref ^2/(2* rho * c )erhouLI_refp_refSIPpc

ID:(3193, 0)



Intensity based on the power density

Equation

>Top, >Model


Si se toma la energía E por oscilación se puede escribir la potencia en función de la energía y el periodo T se tiene que

W=\displaystyle\frac{E}{T}



Si por otro lado con la variación del volumen es

\Delta V = S \lambda



y con section of Volume DV m^2, sound Intensity W/m^2 and sound Power W la intensidad sonora es

I =\displaystyle\frac{ P }{ S }



por lo que

I=\displaystyle\frac{W}{S}=\displaystyle\frac{E}{ST}=\displaystyle\frac{cE}{ScT}=\displaystyle\frac{cE}{V}



osea con section of Volume DV m^2, sound Intensity W/m^2 and sound Power W es

I = c e

e
Energy density
J/m^3
4932
I
Sound Intensity
W/m^2
5091
c
Speed of sound
m/s
5073
I = P / S L = 10* log10( I / I_ref ) e = rho * u ^2/2 I = rho * c * u ^2/2 I = p ^2/(2* rho * c ) I = c * e I_ref = p_ref ^2/(2* rho * c )erhouLI_refp_refSIPpc

ID:(3406, 0)



Sound energy density

Equation

>Top, >Model


The the energy density (e) is obtained from the mean density (\rho) and the molecule speed (u) as follows:

e =\displaystyle\frac{1}{2} \rho u ^2

e
Energy density
J/m^3
4932
\rho
Mean density
kg/m^3
5088
u
Molecule speed
m/s
5072
I = P / S L = 10* log10( I / I_ref ) e = rho * u ^2/2 I = rho * c * u ^2/2 I = p ^2/(2* rho * c ) I = c * e I_ref = p_ref ^2/(2* rho * c )erhouLI_refp_refSIPpc

The energy that a sound wave contributes to the medium in which sound propagates corresponds to the kinetic energy of the particles. With the molecule speed (u) and the mass of a volume of the medium (m) The wave energy (E), it equals the kinetic energy:

E=\displaystyle\frac{1}{2}mu^2



the energy density (e) is obtained by dividing the wave energy (E) by the volume with molecules (\Delta V), giving:

e=\displaystyle\frac{E}{\Delta V}



Introducing the mean density (\rho) as:

\rho=\displaystyle\frac{m}{\Delta V}



yields the energy density:

e =\displaystyle\frac{1}{2} \rho u ^2

ID:(3400, 0)



Intensity versus the molecule speed

Equation

>Top, >Model


Como la densidad de la energía cinética es con energy density J/m^3, mean density kg/m^3 and molecule speed m/s

e =\displaystyle\frac{1}{2} \rho u ^2



se tiene que con energy density J/m^3, sound Intensity W/m^2 and speed of sound m/s

I = c e



que la intensidad es con energy density J/m^3, sound Intensity W/m^2 and speed of sound m/s

I =\displaystyle\frac{1}{2} \rho c u ^2

\rho
Mean density
kg/m^3
5088
u
Molecule speed
m/s
5072
I
Sound Intensity
W/m^2
5091
c
Speed of sound
m/s
5073
I = P / S L = 10* log10( I / I_ref ) e = rho * u ^2/2 I = rho * c * u ^2/2 I = p ^2/(2* rho * c ) I = c * e I_ref = p_ref ^2/(2* rho * c )erhouLI_refp_refSIPpc

ID:(3404, 0)



Intensity depending on the sound pressure

Equation

>Top, >Model


The sound Intensity (I) can be calculated from the mean density (\rho), the sound pressure (p) The molar concentration (c) with

I =\displaystyle\frac{ p ^2}{2 \rho c }

\rho
Mean density
kg/m^3
5088
I
Sound Intensity
W/m^2
5091
p
Sound pressure
Pa
5084
c
Speed of sound
m/s
5073
I = P / S L = 10* log10( I / I_ref ) e = rho * u ^2/2 I = rho * c * u ^2/2 I = p ^2/(2* rho * c ) I = c * e I_ref = p_ref ^2/(2* rho * c )erhouLI_refp_refSIPpc

The sound Intensity (I) can be calculated from the mean density (\rho), the molecule speed (u), and the molar concentration (c) using

I =\displaystyle\frac{1}{2} \rho c u ^2



and since the sound pressure (p) is defined as

p = \rho c u



it follows that the sound Intensity (I) can be expressed in terms of the sound pressure (p) by

I =\displaystyle\frac{ p ^2}{2 \rho c }

ID:(3405, 0)



Noise level as function of the sound intensity

Equation

>Top, >Model


Just like in other human sensory systems, our hearing is capable of detecting pressure variations over a wide range (10^{-5}-10^2 Pa). However, when we perceive a signal doubling, it doesn't correspond to double the pressure or sound intensity, but rather the square of these magnitudes. In other words, our signal detection capacity operates on a logarithmic and nonlinear scale.

Hence, the noise level, air (L) is indicated not in the sound Intensity (I) or the reference intensity, air (I_{ref}), but in the base ten logarithm of these magnitudes. Particularly, we take the lowest sound intensity we can perceive, the reference intensity, air (I_{ref})

, and use it as a reference. The new scale is defined with as follows:

L = 10 log_{10}\left(\displaystyle\frac{ I }{ I_{ref} }\right)

L
Noise level, air
dB
5119
I_{ref}
Reference intensity, air
20e-6
W/m^2
5120
I
Sound Intensity
W/m^2
5091
I = P / S L = 10* log10( I / I_ref ) e = rho * u ^2/2 I = rho * c * u ^2/2 I = p ^2/(2* rho * c ) I = c * e I_ref = p_ref ^2/(2* rho * c )erhouLI_refp_refSIPpc

ID:(3194, 0)



Intensity reference values

Equation

>Top, >Model


The sound pressure level that we can detect with our ear, denoted as the reference pressure, water (p_{ref}), is 2 \times 10^{-5} , Pa.

Since the sound Intensity (I) is associated with the sound pressure (p), the mean density (\rho), and the speed of sound (c), and is equal to

I =\displaystyle\frac{ p ^2}{2 \rho c }



we can calculate a value for the reference intensity, air (I_{ref}) based on the value of the reference pressure, water (p_{ref}):

I_{ref} =\displaystyle\frac{ p_{ref} ^2}{2 \rho c }

\rho
Mean density
kg/m^3
5088
I_{ref}
Reference intensity, air
20e-6
W/m^2
5120
p_{ref}
Reference pressure
3.65e+10
Pa
5121
c
Speed of sound
m/s
5073
I = P / S L = 10* log10( I / I_ref ) e = rho * u ^2/2 I = rho * c * u ^2/2 I = p ^2/(2* rho * c ) I = c * e I_ref = p_ref ^2/(2* rho * c )erhouLI_refp_refSIPpc

This is achieved with a density of 1.27 , kg/m^3 and a sound speed of 331 , m/s, equivalent to 9.5 \times 10^{-13} , W/m^2.

ID:(3409, 0)