Potential Energy

Storyboard

If a body is moved by defeating a force on a given path, energy can be stored that can then accelerate the body by imparting a speed and thereby kinetic energy. Stored energy has the potential to accelerate the body and is therefore called potential energy.

>Model

ID:(752, 0)



Gravitational potential energy at the planet's surface

Equation

>Top, >Model


At the surface of the planet, the gravitational force is

$ F_g = m_g g $



and the energy

$ dW = \vec{F} \cdot d\vec{s} $



can be shown to be

$ V = m_g g z $

$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$m_g$
Gravitational mass
$kg$
8762
$z$
Height above Floor
$m$
5286
$V$
Potential Energy
$J$
4981

As the gravitational force is

$ F_g = m_g g $



with $m$ representing the mass. To move this mass from a height $h_1$ to a height $h_2$, a distance of

$ V = m g ( h_2 - h_1 )$



is covered. Therefore, the energy

$ dW = \vec{F} \cdot d\vec{s} $



with $\Delta s=\Delta h$ gives us the variation in potential energy:

$\Delta W = F\Delta s=mg\Delta h=mg(h_2-h_1)=U_2-U_1=\Delta V$



thus, the gravitational potential energy is

$ V = m_g g z $

ID:(3245, 0)



Gravitational potential energy

Equation

>Top, >Model


To lift an object from height $h_1$ to a height $h_2$, energy is required, which we will call gravitational potential energy

$ V = m_g g z $



and which is proportional to the gained height:

$ V = m g ( h_2 - h_1 )$

$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$h_1$
Height 1
$m$
7114
$h_2$
Height 2
$m$
7115
$m$
Mass
$kg$
5183
$V$
Potential Energy
$J$
4981

When an object moves from a height $h_1$ to a height $h_2$, it covers the difference in height

$h = h_2 - h_1$



thus, the potential energy

$ V = m_g g z $



becomes equal to

$ V = m g ( h_2 - h_1 )$

ID:(7111, 0)



Height of the center of mass in a pendulum

Equation

>Top, >Model


For a pendulum with length $L$ that is deflected at an angle $\theta$, the mass is raised



by a height equal to:

$ h = L (1-\cos \theta )$

$h$
Height in Case Pendulum
$m$
6296
$L$
Pendulum Length
$m$
6282
$\theta$
Swing angle
$rad$
6283

ID:(4523, 0)



Potential energy of a mathematical pendulum

Equation

>Top, >Model


For the case of a mass $m$ hanging from a string of length $L$ and being deflected at an angle $\theta$ from the vertical, the mass will gain a height of

$ h = L (1-\cos \theta )$



which means that the gravitational potential energy

$ V = m_g g z $



will be

$ U = m g L (1-\cos \theta )$

$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$m_g$
Gravitational mass
$kg$
8762
$L$
Pendulum Length
$m$
6282
$U$
Potential Energy Pendulum
$J$
6284
$\theta$
Swing angle
$rad$
6283

where $g$ is the acceleration due to gravity.

ID:(4513, 0)



Potential energy of a mathematical pendulum for small angles

Equation

>Top, >Model


The gravitational potential energy of a pendulum is

$ U = m g L (1-\cos \theta )$



which for small angles can be approximated as:

$ V =\displaystyle\frac{1}{2} m_g g L \theta ^2$

$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$m_g$
Gravitational mass
$kg$
8762
$L$
Pendulum Length
$m$
6282
$V$
Potential Energy Pendulum, for small Angles
$J$
6285
$\theta$
Swing angle
$rad$
6283

The gravitational potential energy of a pendulum with mass m, suspended from a string of length L and deflected by an angle \theta is given by

$ U = m g L (1-\cos \theta )$



where g is the acceleration due to gravity.

For small angles, the cosine function can be approximated using a Taylor series expansion up to the second term

$\cos\theta\sim 1-\displaystyle\frac{1}{2}\theta^2$



This approximation leads to the simplification of the potential energy to

$ V =\displaystyle\frac{1}{2} m_g g L \theta ^2$



It's important to note that the angle must be expressed in radians.

ID:(4514, 0)



Elastic potential energy

Equation

>Top, >Model


En el caso elástico (resorte) la fuerza es



la energía

$ dW = \vec{F} \cdot d\vec{s} $



se puede mostrar que en este caso es

$ V =\displaystyle\frac{1}{2} k x ^2$

$x$
Elongation of the Spring
$m$
5313
$k$
Hooke Constant
$N/m$
5311
$V$
Potential Energy
$J$
4981

En el caso elástico (resorte) la fuerza es



con k la constante del resorte y x la elongación/compresión del resorte. La variación de la energía potencial es

$ dW = \vec{F} \cdot d\vec{s} $

\\n\\nLa diferencia\\n\\n

$\Delta x = x_2 - x_1$

\\n\\ncorresponde al camino recorrido por lo que\\n\\n

$\Delta W=k,x,\Delta x=k(x_2-x_1)\displaystyle\frac{(x_1+x_2)}{2}=\displaystyle\frac{k}{2}(x_2^2-x_1^2)$



y con ello la energía potencial elástica es

$ V =\displaystyle\frac{1}{2} k x ^2$

ID:(3246, 0)



Potential energy of a spring

Equation

>Top, >Model


The elongation $\Delta x$ of a spring is calculated as the difference between its original position $x_1$ and its current position $x_2$, which is expressed as

$ V =\displaystyle\frac{1}{2} k ( x_2 ^2- x_1 ^2)$

$k$
Hooke Constant
$N/m$
5311
$s_1$
Position 1
$m$
5481
$s_2$
Position 2
$m$
5482
$V$
Potential Energy
$J$
4981

It is commonly defined that if a spring is stretched, the elongation is positive, and if it is compressed, it is negative.

ID:(7112, 0)



Gravitational potential energy in general

Equation

>Top, >Model


The gravitational force in general is expressed as

$ F = G \displaystyle\frac{ m_g M }{ r ^2}$



while the energy

$ dW = \vec{F} \cdot d\vec{s} $



can be shown to be

$ V = - \displaystyle\frac{ G m M }{ r } $

$r$
Distance to the center of the celestial body
$m$
8758
$V$
General gravitational potential energy
$-$
9792
$G$
Gravitational constant
6.673e-11
$m^3/kg s^2$
8759
$m_g$
Gravitational mass
$kg$
8762
$M$
Mass of the celestial body
$kg$
8756

As the gravitational force is

$ F = G \displaystyle\frac{ m_g M }{ r ^2}$



To move a mass $m$ from a distance $r_1$ to a distance $r_2$ from the center of the planet, a potential energy is required

$ W =\displaystyle\int_C \vec{F} \cdot d \vec{s} $



resulting in the gravitational potential energy being

$W_2-W_1=\displaystyle\int_{r_1}^{r_2}\displaystyle\frac{GmM}{r^2}dr=\displaystyle\frac{GmM}{r_1}-\displaystyle\frac{GmM}{r_2}$



thus yielding

$ V = - \displaystyle\frac{ G m M }{ r } $

ID:(12551, 0)



0
Video

Video: Potential Energy