Oscillators of a Spring

Storyboard

In the case of the spring the force is proportional to the elongation of the spring so that the equations of motion are linear and the frequency of the oscillation is independent of the amplitude. This is the key to generate an oscillation that does not depend on the fact that the friction decreases over time. This is why old clocks used (circular) springs to generate stable oscillations to measure elapsed time.

>Model

ID:(1425, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15848, 0)



Oscillations with a spring

Description

>Top


One of the systems it depicts is that of a spring. This is associated with the elastic deformation of the material from which the spring is made. By "elastic," we mean a deformation that, upon removing the applied stress, allows the system to fully regain its original shape. It's understood that it doesn't undergo plastic deformation.

Since the energy of the spring is given by

$E=\displaystyle\frac{1}{2}m_i v^2+\displaystyle\frac{1}{2}k x^2$



the period will be equal to

$T=2\pi\sqrt{\displaystyle\frac{m_i}{k}}$



and thus, the angular frequency is

$ \omega_0 ^2=\displaystyle\frac{ k }{ m_i }$

ID:(15563, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$x$
x
Elongation of the Spring
m
$\omega$
omega
Frecuencia angular del resorte
rad/s
$k$
k
Hooke Constant
N/m
$m_i$
m_i
Inertial Mass
kg
$x_0$
x_0
Initial amplitude of the oscillation
m
$v$
v
Oscillator speed
m/s
$\pi$
pi
Pi
rad
$V$
V
Potential Energy
J
$E$
E
Total Energy
J
$K$
K
Total Kinetic Energy
J

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\nu$
nu
Frequency
Hz
$p$
p
Moment
kg m/s
$T$
T
Period
s
$t$
t
Time
s

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ E = K + V $

E = K + V


$ K =\displaystyle\frac{ p ^2}{2 m_i }$

K = p ^2/(2 * m_i )


$ \nu =\displaystyle\frac{1}{ T }$

nu =1/ T


$ \omega = 2 \pi \nu $

omega = 2* pi * nu


$ \omega = \displaystyle\frac{2 \pi }{ T }$

omega = 2* pi / T


$ \omega_0 ^2=\displaystyle\frac{ k }{ m_i }$

omega_0 ^2 = k / m_i


$ p = m_i v $

p = m_i * v


$ T =2 \pi \sqrt{\displaystyle\frac{ m_i }{ k }}$

T =2* pi *sqrt( m_i / k )


$ v = - x_0 \omega_0 \sin \omega_0 t $

v = - x_0 * omega_0 *sin( omega_0 * t )


$ V =\displaystyle\frac{1}{2} k x ^2$

V = k * x ^2/2


$ E =\displaystyle\frac{1}{2} k x_0 ^2$

V = k * x ^2/2


$ x = x_0 \cos \omega t $

x = x_0 *cos( omega_0 * t )

ID:(15851, 0)



Total Energy

Equation

>Top, >Model


The total energy corresponds to the sum of the total kinetic energy and the potential energy:

$ E = K + V $

$V$
Potential Energy
$J$
4981
$E$
Total Energy
$J$
5290
$K$
Total Kinetic Energy
$J$
5314

ID:(3687, 0)



Kinetic energy as a function of moment

Equation

>Top, >Model


The kinetic energy of a mass $m$

$ K_t =\displaystyle\frac{1}{2} m_i v ^2$



can be expressed in terms of momentum as

$ K =\displaystyle\frac{ p ^2}{2 m_i }$

$m_i$
Inertial Mass
$kg$
6290
$p$
Moment
$kg m/s$
8974
$K$
$K$
Total Kinetic Energy
$J$
5314

Since kinetic energy is equal to

$ K_t =\displaystyle\frac{1}{2} m_i v ^2$



and momentum is

$ p = m_i v $



we can express it as

$K_t=\displaystyle\frac{1}{2} m_i v^2=\displaystyle\frac{1}{2} m_i \left(\displaystyle\frac{p}{m_i}\right)^2=\displaystyle\frac{p^2}{2m_i}$



or

$ K =\displaystyle\frac{ p ^2}{2 m_i }$

ID:(4425, 0)



Elastic potential energy (1)

Equation

>Top, >Model


En el caso elástico (resorte) la fuerza es



la energía

$ dW = \vec{F} \cdot d\vec{s} $



se puede mostrar que en este caso es

$ V =\displaystyle\frac{1}{2} k x ^2$

$x$
Elongation of the Spring
$m$
5313
$k$
Hooke Constant
$N/m$
5311
$V$
Potential Energy
$J$
4981

En el caso elástico (resorte) la fuerza es



con k la constante del resorte y x la elongación/compresión del resorte. La variación de la energía potencial es

$ dW = \vec{F} \cdot d\vec{s} $

\\n\\nLa diferencia\\n\\n

$\Delta x = x_2 - x_1$

\\n\\ncorresponde al camino recorrido por lo que\\n\\n

$\Delta W=k,x,\Delta x=k(x_2-x_1)\displaystyle\frac{(x_1+x_2)}{2}=\displaystyle\frac{k}{2}(x_2^2-x_1^2)$



y con ello la energía potencial elástica es

$ V =\displaystyle\frac{1}{2} k x ^2$

ID:(3246, 1)



Elastic potential energy (2)

Equation

>Top, >Model


En el caso elástico (resorte) la fuerza es



la energía

$ dW = \vec{F} \cdot d\vec{s} $



se puede mostrar que en este caso es

$ E =\displaystyle\frac{1}{2} k x_0 ^2$

$ V =\displaystyle\frac{1}{2} k x ^2$

$x$
$x_0$
Initial amplitude of the oscillation
$m$
9961
$k$
Hooke Constant
$N/m$
5311
$V$
$E$
Total Energy
$J$
5290

En el caso elástico (resorte) la fuerza es



con k la constante del resorte y x la elongación/compresión del resorte. La variación de la energía potencial es

$ dW = \vec{F} \cdot d\vec{s} $

\\n\\nLa diferencia\\n\\n

$\Delta x = x_2 - x_1$

\\n\\ncorresponde al camino recorrido por lo que\\n\\n

$\Delta W=k,x,\Delta x=k(x_2-x_1)\displaystyle\frac{(x_1+x_2)}{2}=\displaystyle\frac{k}{2}(x_2^2-x_1^2)$



y con ello la energía potencial elástica es

$ V =\displaystyle\frac{1}{2} k x ^2$

ID:(3246, 2)



Oscillations with a spring

Equation

>Top, >Model


The product of the hooke Constant ($k$) and the inertial Mass ($m_i$) is called the frecuencia angular del resorte ($\omega$) and is defined as:

$ \omega_0 ^2=\displaystyle\frac{ k }{ m_i }$

$\omega_0$
Frecuencia angular del resorte
$rad/s$
9798
$k$
Hooke Constant
$N/m$
5311
$m_i$
Inertial Mass
$kg$
6290

ID:(1242, 0)



Moment

Equation

>Top, >Model


The moment ($p$) is calculated from the inertial Mass ($m_i$) and the speed ($v$) using

$ p = m_i v $

$m_i$
Inertial Mass
$kg$
6290
$p$
Moment
$kg m/s$
8974
$v$
$v$
Oscillator speed
$m/s$
9965

ID:(10283, 0)



Periodo de la Oscilación

Equation

>Top, >Model


Como la oscilación cumple las leyes físicas se puede hacer uso del hecho que el area debajo de la curva velocidad vs tiempo el camino recorrido para determinar el perido. Como la velocidad es\\n\\n

$\displaystyle\int_0^{T/2}v(t)dt=\sqrt{\displaystyle\frac{2E}{m}}\displaystyle\int_0^{T/2}\cos \displaystyle\frac{2\pi t}{T}dt=\sqrt{\displaystyle\frac{2E}{m}}\displaystyle\frac{T}{\pi}$

\\n\\ny el camino entre un mínimo a un máximo de una elongación, lo que ocurre entre el tiempo 0 y T/2 es igual a\\n\\n

$x_{max}-x_{min}=2\sqrt{\displaystyle\frac{2E}{k}}$



se tiene que

$ T =2 \pi \sqrt{\displaystyle\frac{ m_i }{ k }}$

$k$
Hooke Constant
$N/m$
5311
$m_i$
Inertial Mass
$kg$
6290
$T$
Period
$s$
5078
$\pi$
Pi
3.1415927
$rad$
5057

ID:(7106, 0)



Frequency

Equation

>Top, >Model


The frequency ($\nu$) corresponds to the number of times an oscillation occurs within one second. The period ($T$) represents the time it takes for one oscillation to occur. Therefore, the number of oscillations per second is:

$ \nu =\displaystyle\frac{1}{ T }$

$\nu$
Frequency
$Hz$
5077
$T$
Period
$s$
5078

Frequency is indicated in Hertz (Hz).

ID:(4427, 0)



Angular frequency

Equation

>Top, >Model


The angular frequency ($\omega$) is with the period ($T$) equal to

$ \omega = \displaystyle\frac{2 \pi }{ T }$

$\omega$
$\omega$
Frecuencia angular del resorte
$rad/s$
9798
$T$
Period
$s$
5078
$\pi$
Pi
3.1415927
$rad$
5057

ID:(12335, 0)



Relación frecuencia angular - frecuencia

Equation

>Top, >Model


Como la frecuencia angular es con angular frequency $rad/s$, period $s$ and pi $rad$ igual a

$ \omega = \displaystyle\frac{2 \pi }{ T }$



y la frecuencia con frequency $Hz$ and period $s$ igual a

$ \nu =\displaystyle\frac{1}{ T }$



se tiene que con frequency $Hz$ and period $s$ igual a

$ \omega = 2 \pi \nu $

$\omega$
$\omega$
Frecuencia angular del resorte
$rad/s$
9798
$\nu$
Frequency
$Hz$
5077
$\pi$
Pi
3.1415927
$rad$
5057

ID:(12338, 0)



Oscillation amplitude

Equation

>Top, >Model


With the description of the oscillation using

$ z = x_0 \cos \omega_0 t + i x_0 \sin \omega_0 t $



the real part corresponds to the temporal evolution of the amplitude

$ x = x_0 \cos \omega t $

$ x = x_0 \cos \omega_0 t $

$x_0$
Initial amplitude of the oscillation
$m$
9961
$x$
$x$
Elongation of the Spring
$m$
5313
$\omega_0$
$\omega$
Frecuencia angular del resorte
$rad/s$
9798
$t$
Time
$s$
5264

ID:(14074, 0)



Swing speed

Equation

>Top, >Model


When we extract the real part of the derivative of the complex number representing the oscillation

$ \dot{z} = i \omega_0 z $



whose real part corresponds to the velocity

$ v = - x_0 \omega \sin \omega t $

$ v = - x_0 \omega_0 \sin \omega_0 t $

$\omega_0$
Frecuencia angular del resorte
$rad/s$
9798
$x_0$
Initial amplitude of the oscillation
$m$
9961
$v$
Oscillator speed
$m/s$
9965
$t$
Time
$s$
5264

Using the complex number

$ z = x_0 \cos \omega_0 t + i x_0 \sin \omega_0 t $



introduced in

$ \dot{z} = i \omega_0 z $



we obtain

$\dot{z} = i\omega_0 z = i \omega_0 x_0 \cos \omega_0 t - \omega_0 x_0 \sin \omega_0 t$



thus, the velocity is obtained as the real part

$ v = - x_0 \omega_0 \sin \omega_0 t $

ID:(14076, 0)