Absorción en Raíces

Storyboard

>Model

ID:(505, 0)



root002

Description

![root002](showImage.php)
root002

ID:(2987, 0)



root001

Description

![root001](showImage.php)
root001

ID:(2986, 0)



root009

Description

![root009](showImage.php)
root009

ID:(2991, 0)



root003

Description

![root003](showImage.php)
root003

ID:(2988, 0)



root004

Description

![root004](showImage.php)
root004

ID:(2989, 0)



Osmotic Pressure

Description

ID:(54, 0)



root007

Description

![root007](showImage.php)
root007

ID:(2990, 0)



root013

Description

![root013](showImage.php)
root013

ID:(2992, 0)



root014

Description

![root014](showImage.php)
root014

ID:(2993, 0)



Absorción en Raíces

Description

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$T$
T
Absolute temperature
K
$\bar{v}$
v_m
Average speed
m/s
$\bar{v}$
v
Average speed of a particle
m/s
$f$
f
Degrees of freedom
-
$\rho$
rho
Density
kg/m^3
$E$
E
Energy
J
$K$
K
Kinetic energy
J
$c_m$
c_m
Molar concentration
mol/m^3
$\Psi$
Psi
Osmotic pressure
Pa
$c_n$
c_n
Particle concentration
1/m^3
$m$
m
Particle mass
kg
$p$
p
Pressure
Pa
$\Delta v$
Dv
Speed difference between surfaces
m/s
$\sigma$
s
Stefan Boltzmann constant
J/m^2K^4s
$\Delta p$
Dp
Variación de la Presión
Pa

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations

In the case where there is no hystrostatic pressure, Bernoulli's law for the density ($\rho$), the pressure in column 1 ($p_1$), the pressure in column 2 ($p_2$), the mean Speed of Fluid in Point 1 ($v_1$) and the mean Speed of Fluid in Point 2 ($v_2$)

$\displaystyle\frac{1}{2} \rho v_1 ^2 + p_1 =\displaystyle\frac{1}{2} \rho v_2 ^2 + p_2 $



can be rewritten with the variación de la Presión ($\Delta p$)

$ dp = p - p_0 $



and keeping in mind that

$v_2^2 - v_1^2 = \displaystyle\frac{1}{2}(v_2-v_1)(v_1+v_2)$



with

$ \bar{v} = \displaystyle\frac{ v_1 + v_2 }{2}$



and

$ \Delta v = v_2 - v_1 $



you have to

$ \Delta p = - \rho \bar{v} \Delta v $

(ID 4835)


Examples

![root002](showImage.php)
root002

(ID 2987)

![root001](showImage.php)
root001

(ID 2986)

![root009](showImage.php)
root009

(ID 2991)

![root003](showImage.php)
root003

(ID 2988)

![root004](showImage.php)
root004

(ID 2989)

The kinetic energy ($K$) combined with the particle mass ($m$) and the average speed of a particle ($\bar{v}$) equals

$ K =\displaystyle\frac{ m }{2} \bar{v} ^2$



Note: In strict rigor, kinetic energy depends on the average velocity squared $\bar{v^2}$. However, it is assumed to be approximately equal to the square of the average velocity:

$\bar{v^2}\sim\bar{v}^2$

(ID 4390)

![root007](showImage.php)
root007

(ID 2990)

En el caso de una membrana real, cada presi n osm tica parcial $\Psi_k$ se multiplica con su constante de Staveman $\sigma_k$ de modo de obtener a presi n osm tica total real $\Psi=\sum_k\sigma_k\Psi_k$

(ID 4830)

![root013](showImage.php)
root013

(ID 2992)

![root014](showImage.php)
root014

(ID 2993)

The variación de la Presión ($\Delta p$) can be calculated from the average speed ($\bar{v}$) and the speed difference between surfaces ($\Delta v$) with the density ($\rho$) using

$ \Delta p = - \rho \bar{v} \Delta v $

which allows us to see the effect of the average speed of a body and the difference between its surfaces, as observed in an airplane or bird wing.

(ID 4835)


ID:(505, 0)