Absorción en Raíces
Description 
Variables
Calculations
Calculations
Equations
(ID 4815)
In the case where there is no hystrostatic pressure, Bernoulli's law for the density ($\rho$), the pressure in column 1 ($p_1$), the pressure in column 2 ($p_2$), the mean Speed of Fluid in Point 1 ($v_1$) and the mean Speed of Fluid in Point 2 ($v_2$)
| $\displaystyle\frac{1}{2} \rho v_1 ^2 + p_1 =\displaystyle\frac{1}{2} \rho v_2 ^2 + p_2 $ |
can be rewritten with the variación de la Presión ($\Delta p$)
| $ dp = p - p_0 $ |
and keeping in mind that
$v_2^2 - v_1^2 = \displaystyle\frac{1}{2}(v_2-v_1)(v_1+v_2)$
with
| $ \bar{v} = \displaystyle\frac{ v_1 + v_2 }{2}$ |
and
| $ \Delta v = v_2 - v_1 $ |
you have to
| $ \Delta p = - \rho \bar{v} \Delta v $ |
(ID 4835)
Examples

root002
(ID 2987)

root001
(ID 2986)
(ID 4810)

root009
(ID 2991)

root003
(ID 2988)

root004
(ID 2989)
(ID 4811)
(ID 4812)
The kinetic energy ($K$) combined with the particle mass ($m$) and the average speed of a particle ($\bar{v}$) equals
| $ K =\displaystyle\frac{ m }{2} \bar{v} ^2$ |
Note: In strict rigor, kinetic energy depends on the average velocity squared $\bar{v^2}$. However, it is assumed to be approximately equal to the square of the average velocity:
$\bar{v^2}\sim\bar{v}^2$
(ID 4390)
(ID 4813)
(ID 4815)
(ID 54)

root007
(ID 2990)
(ID 4816)
(ID 4817)
En el caso de una membrana real, cada presi n osm tica parcial $\Psi_k$ se multiplica con su constante de Staveman $\sigma_k$ de modo de obtener a presi n osm tica total real $\Psi=\sum_k\sigma_k\Psi_k$
(ID 4830)

root013
(ID 2992)

root014
(ID 2993)
The variación de la Presión ($\Delta p$) can be calculated from the average speed ($\bar{v}$) and the speed difference between surfaces ($\Delta v$) with the density ($\rho$) using
| $ \Delta p = - \rho \bar{v} \Delta v $ |
which allows us to see the effect of the average speed of a body and the difference between its surfaces, as observed in an airplane or bird wing.
(ID 4835)
ID:(505, 0)
