Centro de Masa del Arbol
Description 
Variables
Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$c_{CM}$
c_CM
Center of Mass Factor
-
$z_f$
z_f
Center of Mass of Foliage
m
$z_f$
z_f
Center of Mass of Foliage, Case Cone
m
$z_f$
z_f
Center of Mass of Foliage, Case Ellipsoid
m
$z_f$
z_f
Center of Mass of Foliage, Case Inverted Cone
m
$z_{CM}$
z_CM
Center of Mass of the Tree based on the Factor
m
$z_t$
z_t
Center of Mass of the Trunk
m
$c_c$
c_c
Center of Mass Position based Foliage Form Factor
-
$\rho_t$
rho_t
Density of the Trunk
kg/m^3
$\rho_f$
rho_f
Foliage Density
kg/m^3
$M_f$
M_f
General Mass of Foliage in Dimensions of the Trunk
kg
$z_{CM}$
z_CM
Mass General Center Tree
m
$c_f$
c_f
Shape Factor
-
$h$
h
Tree Height
m
$\mu$
mu
Trunk Height Factor
-
$M_s$
M_s
Trunk Mass
kg
$\gamma$
gamma
Trunk Radio Factor
-
Calculations
First, select the equation:
to
,
then, select the variable:
to
Symbol
Equation
Solved
Translated
Calculations
Symbol
Equation
Solved
Translated
Equations
(ID 4461)
Examples
(ID 1206)

tree_form006
(ID 7133)
z_t=\displaystyle\frac{h}{4}
(ID 4461)
z_f=(1-\displaystyle\frac{3}{4}\mu)h
(ID 4462)
z_f=(1-\displaystyle\frac{1}{2}\mu)h
(ID 4464)
z_f=(1-\displaystyle\frac{1}{4}\mu)h
(ID 4463)
z_t=(1-\displaystyle\frac{c_c}{4}\mu)h
(ID 4465)
z_{CM}=\displaystyle\frac{M_tz_t+M_fz_f}{M_t+M_f}
(ID 4466)
(ID 53)
c_{CM}=\displaystyle\frac{\rho_t+(4-c_c\mu)c_f\mu\gamma^2\rho_f}{\rho_t+c_f\mu\gamma^2\rho_f}
(ID 4587)
z_{CM}=c_{CM}\displaystyle\frac{h}{4}
(ID 4588)

tree_form007
(ID 7134)

tree_form002
(ID 7129)
ID:(483, 0)
